Les expériences de laboratoire montrent que, même dans des solutions très diluées, l’interaction des polymères avec des écoulements fluides peut modifier considérablement les propriétés des écoulements turbulents ou, si l’écoulement est laminaire, peut déclencher un nouveau type de mouvement irrégulier appelé «turbulence élastique». Les écoulements dans un tel régime dynamique sont prometteurs pour améliorer l'efficacité du mélange dans les applications microfluidiques, qui impliquent souvent la présence d'impuretés de taille finie en suspension, telles que des particules solides petites et lourdes. La compréhension de la dispersion des particules dans les écoulements à grand nombre de Reynolds des fluides newtoniens et non newtoniens a déjà été abordée dans des études antérieures, qui ont mis en évidence des effets à la fois à grande et à petite échelle et est un sujet d'intérêt à la fois fondamental et pour des applications environnementales ou industrielles par exemple. Cependant, la dynamique des particules dans les écoulements élastiques et turbulents reste encore peu explorée. L’étude ici vise à étudier les propriétés d’agrégation de particules matérielles ponctuelles (plus lourdes que le fluide porteur) dans les fluides viscoélastiques dans des conditions de turbulence élastique (c’est-à-dire dans le cas de faible inertie du fluide et de grande élasticité). Nous effectuons des simulations numériques directes bi-dimensionelles d’écoulements périodiques avec cisaillement moyen de Kolmogorov avec des solutions de polymères dilués décrites par le modèle Oldroyd-B. Les caractéristiques à petite et grande échelle de la distribution résultante inhomogène de particules sont examinées, en se concentrant sur leur connexion avec la structure sous-jacente de l’écoulement . Notre analyse révèle que les particules sont préférentiellement regroupées dans des régions où les polymères sont instantanément maximalement étirés. L’intensité d’un tel phénomène dépend de l’interaction paramétrée par le nombre de Stokes, entre l’inertie des particules et l’échelle de temps typique associée à l’écoulement de turbulence élastique, et est la plus grande pour des valeurs intermédiaires d’inertie de particules. En particulier, il est montré que la concentration préférentielle de suspensions de particules inertielles dans de tels écoulements ressemblant à la turbulence découle de la nature dissipative de leurs dynamiques. Nous établissons une caractérisation quantitative de ce phénomène (utilisant la corrélation et la dimension de Kaplan-Yorke) qui permet de le relier à l’accumulation de particules dans des régions de l’écoulement filamenteuses fortement déformées produisant des grappes de dimension fractale faiblement supérieure à 1. À plus grande échelle, les particules subissent une ségrégation de type turbophorétique dans la direction non-homogéne de l'écoulement. En effet, nos résultats indiquent que la distribution des particules est fortement liée aux structures moyennes de l’écoulement de type turbulent. En raison de la turbophorèse, les profils de densité moyenne atteignent leur maximum dans les régions où la diffusivité turbulente est la plus faible. L'inhomogénéité à grande échelle de la distribution des particules est interprétée dans le cadre d'un modèle dérivé dans la limite d'inertie des particules, petite mais finie. Les caractéristiques qualitatives de différents observables (telles que L'écart quadratique moyen de la distribution des particules par rapport à la distribution uniforme) sont, dans une large mesure, indépendantes de l'élasticité du l’écoulement. Quand celle-ci est augmentée, on constate cependant que cette dernière diminue légèrement le degré global moyen de mélange turbophorétique. / Laboratory experiments show that, even in very dilute solutions, the interaction of polymers with fluid flows can dramatically change the properties of turbulent flows or, if the flow is laminar, can trigger a new sort of irregular motion named “elastic turbulence”. Flows in such a dynamical regime are promising for enhancing mixing efficiency in microfluidic applications, which often involve the presence of suspended finite-size impurities, like small and heavy solid particles. The understanding of particle dispersion in high-Reynolds number flows of Newtonian, as well as non-Newtonian, fluids were addressed by previous investigations, and it is a subject of interest both at a fundamental level and for applications, e.g., environmental or industrial ones. However, the dynamics of particles in elastic turbulent flows are still quite unexplored.The present study aims at investigating the aggregation properties of pointlike material particles (heavier than the carrying fluid) in viscoelastic fluids in elastic turbulence conditions (i.e. in the limit of vanishing fluid inertia and large elasticity). We carry out extensive direct numerical simulations of the periodic Kolmogorov mean shear flow of two-dimensional dilute polymer solutions described by the Oldroyd-B model. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the underlying flow structure. Our analysis reveals that particles are preferentially clustered in regions of instantaneously maximally stretched polymers. The intensity of such a phenomenon depends on the interplay, parametrized by the Stokes number, between the particle inertia and the typical time scale associated with the elastic turbulence flow, and is the largest for intermediate values of particle inertia.In particular, it is shown that the preferential concentration of inertial particle suspensions in such turbulent-like flows follow from the dissipative nature of their dynamics. We provide a quantitative characterization of this phenomenon (using correlation and Kaplan-Yorke dimension) that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of fractal dimension slightly above 1.At larger scales, particles are found to undergo turbophoretic-like segregation along the non-homogeneity direction of the flow. Indeed, our results indicate that the particle distribution is strongly related to the mean turbulent-like structures of the flow. As an effect of turbophoresis, average density profiles peak in the regions of lowest turbulent eddy diffusivity. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables (such as root-mean-square deviation of the particle distribution, relative to the uniform one) are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.
Identifer | oai:union.ndltd.org:theses.fr/2019LIL1I003 |
Date | 15 February 2019 |
Creators | Garg, Himani |
Contributors | Lille 1, Mompean, Gilmar, Calzavarini, Enrico, Berti, Stefano |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds