Cette thèse porte sur la réalisation des tâches avec la locomotion sur des robots humanoïdes. Grâce à leurs nombreux degrés de liberté, ces robots possèdent un très haut niveau de redondance. D’autre part, les humanoïdes sont sous-actionnés dans le sens où la position et l’orientation ne sont pas directement contrôlées par un moteur. Ces deux aspects, le plus souvent étudiés séparément dans la littérature, sont envisagés ici dans un même cadre. En outre, la génération d’un mouvement complexe impliquant à la fois des tâches de manipulation et de locomotion, étudiée habituellement sous l’angle de la planification de mouvement, est abordée ici dans sa composante réactivité temps réel. En divisant le processus d’optimisation en deux étapes, un contrôleur basé sur la notion de pile de tâches permet l’adaptation temps réel des empreintes de pas planifiées dans la première étape. Un module de perception est également conçu pour créer une boucle fermée de perception-décision-action. Cette architecture combinant planification et réactivité est validée sur le robot HRP-2. Deux classes d’expériences sont menées. Dans un cas, le robot doit saisir un objet éloigné, posé sur une table ou sur le sol. Dans l’autre, le robot doit franchir un obstacle. Dans les deux cas, les condition d’exécution sont mises à jour en temps réel pour faire face à la dynamique de l’environnement : changement de position de l’objet à saisir ou de l’obstacle à franchir. / This thesis focuses on realization of tasks with locomotion on humanoid robots. Thanks to their numerous degrees of freedom, humanoid robots possess a very high level of redundancy. On the other hand, humanoids are underactuated in the sense that the position and orientation of the base are not directly controlled by any motor. These two aspects, usually studied separately in manipulation and locomotion research, are unified in a same framework in this thesis and are resolved as one unique problem. Moreover, the generation of a complex movement involving both tasks and footsteps is also improved becomes reactive. By dividing the optimization process into appropriate stages and by feeding directly the intermediate result to a task-based controller, footsteps can be calculated and adapted in real-time to deal with changes in the environment. A perception module is also developed to build a closed perception-decision-action loop. This architecture combining motion planning and reactivity validated on the HRP-2 robot. Two classes of experiments are carried out. In one case the robot has to grasp an object far away at different height level. In the other, the robot has to step over an object on the floor. In both cases, the execution conditions are updated in real-time to deal with the dynamics of the environment: changes in position of the target to be caught or of the obstacle to be stepped over.
Identifer | oai:union.ndltd.org:theses.fr/2012INPT0098 |
Date | 30 October 2012 |
Creators | Dang, Duong Ngoc |
Contributors | Toulouse, INPT, Laumond, Jean-Paul |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0049 seconds