Return to search

Bioinformatics-inspired binary image correlation: application to bio-/medical-images, microsarrays, finger-prints and signature classifications

The efforts addressed in this thesis refer to assaying the extent of local features in 2D-images for the purpose of recognition and classification. It is based on comparing a test-image against a template in binary format. It is a bioinformatics-inspired approach pursued and presented as deliverables of this thesis as summarized below: 1. By applying the so-called 'Smith-Waterman (SW) local alignment' and 'Needleman-Wunsch (NW) global alignment' approaches of bioinformatics, a test 2D-image in binary format is compared against a reference image so as to recognize the differential features that reside locally in the images being compared 2. SW and NW algorithms based binary comparison involves conversion of one-dimensional sequence alignment procedure (indicated traditionally for molecular sequence comparison adopted in bioinformatics) to 2D-image matrix 3. Relevant algorithms specific to computations are implemented as MatLabTM codes 4. Test-images considered are: Real-world bio-/medical-images, synthetic images, microarrays, biometric finger prints (thumb-impressions) and handwritten signatures. Based on the results, conclusions are enumerated and inferences are made with directions for future studies. / by Deepti Pappusetty. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3795
ContributorsPappusetty, Deepti, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeText, Electronic Thesis or Dissertation
Formatxii, 122 p. : ill. (some col.), electronic
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds