Indiana University-Purdue University Indianapolis (IUPUI) / A wireless sensor network consists of lightweight nodes with a limited power source. They can be used in a variety of environments, especially in environments for which it is impossible to utilize a wired network. They are easy/fast to deploy. Nodes collect data and send it to a processing center (base station) to be analyzed, in order to detect an event and/or determine information/characteristics of the environment. The challenges for securing a sensor network are numerous. Nodes in this network have a limited amount of power, therefore they could be faulty because of a lack of battery power and broadcast faulty information to the network. Moreover, nodes in this network could be prone to different attacks from an adversary who tries to eavesdrop, modify or repeat the data which is collected by other nodes. Nodes may be mobile. There is no possibility of having a fixed infrastructure. Because of the importance of extracting information from the data collected by the sensors in the network there needs to be some level of security to provide trustworthy information. The goal of this thesis is to organize part of the network in an energy efficient manner in order to produce a suitable amount of integrity/security. By making nodes monitor each other in small organized clusters we increase security with a minimal energy cost. To increase the security of the network we use cryptographic techniques such as: public/ private key, manufacturer signature, cluster signature, etc. In addition, nodes monitor each other's activity in the network, we call it a "neighborhood watch" In this case, if a node does not forward data, or modifies it, and other nodes which are in their transmission range can send a claim against that node.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/6186 |
Date | January 2014 |
Creators | Zare Afifi, Saharnaz |
Contributors | King, Brian, Rizkalla, Maher E., Salama, Paul |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds