Ameliorating cardiac microvascular injury is the most effective means to mitigate diabetes-induced cardiovascular complications. Inositol-requiring 1α (IRE1α), a sensor of endoplasmic reticulum stress, is activated by Toll like receptors (TLRs), and then promotes cardiac microvascular injury. Peli1 is a master regulator of TLRs and activates IRE1α. This study aims to investigate whether Peli1 in endothelial cells promotes diabetes-induced cardiac microvascular injury through activating IRE1α. Here we found that Peli1 was markedly up-regulated in cardiac endothelial cells of both diabetic mice and in AGEs-treated cardiac microvascular endothelial cells (CMECs). Peli1 deficiency in endothelial cells significantly alleviated diabetes-induced cardiac microvascular permeability, promoted microvascular regeneration, and suppressed apoptosis, accompanied by the attenuation of adverse cardiac remodeling. Furthermore, Peli1 deletion in CMECs ameliorated AGEs-induced damages in vitro. We identified heat shock protein 90 (Hsp90) as a potential binding partner for Peli1, and the Ring domain of Peli1 directly bound with Hsp90 to enhance IRE1α phosphorylation. Our study suggests that blocking Peli1 in endothelial cells may protect against diabetes-induced cardiac microvascular injury by restraining ER stress.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11184 |
Date | 01 October 2019 |
Creators | Zhao, Qianwen, Yang, Jie, Chen, Hao, Li, Jiantao, Que, L., Zhu, Guoqing, Liu, Li, Ha, Tuanzhu, Chen, Qi, Li, Chuanfu, Xu, Yong, Li, Yuehua |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0019 seconds