• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role du capteur de stress ischémique IRE1α dans la croissance du glioblastome / Role of the ischemic stress sensor IRE1α in the glioblastoma growth

Jabouille, Arnaud 10 December 2012 (has links)
Les glioblastomes (GBMs) sont les tumeurs cérébrales primaires les plus courantes chez l’adulte avec un pronostic fatal dans les douze mois suivant le diagnostic. De nouvelles avancées dans la connaissance de la pathologie moléculaire des GBMs et de leurs régulateurs clés sont indispensables à l’émergence de nouvelles pistes thérapeutiques. Inositol Requiring Enzyme 1 α (IRE1α) est une protéine résidente du réticulum endoplasmique (RE) agissant en tant que détecteur proximal de l’Unfolded Protein Response (UPR) en conditions physiologiques ou pathologiques. IRE1α est une enzyme bivalente possédant une activité Ser/Thr kinase et endoribonucléasique (RNase). Récemment, des mutations ponctuelles dans le gène ERN1/IRE1α ont été détectées dans les cancers chez l’homme, (en particulier dans les GBMs), et IRE1α a été proposé comme un régulateur majeur de la progression tumorale parmi les protéines kinases. Dans ce travail, nous avons montré que le blocage des deux activités Set/thr kinase et RNase dans les cellules U87-MG réprime fortement l’angiogenèse tumorale, la perfusion des vaisseaux et l’expression de facteurs pro-angiogéniques dans des modèles tumoraux de xénogreffes. Ce changement phénotypique est accompagné d’une réponse dite« d’échappement » des cellules tumorales. Celles-ci envahissent le tissu cérébral sain par migration de long des vaisseaux (mécanismes appelé co-option vasculaire). De plus, ce phénotype a été montré comme étant fonctionnellement associé au processus de transition mésenchymateuse. Par mutagenèse dirigée, nous avons montré qu’IRE1α module les processus d’angiogenèse et d’invasion par ces deux domaines catalytiques : l’activité Ser/Thr kinase d’IRE1α est essentielle pour l’angiogenèse alors que le domaine RNase d’IRE1α contrôle le phénotype invasif et co-opté. IRE1α est ainsi identifié comme un régulateur clé de la croissance du glioblastome, agissant au carrefour de signalisations majeures dans le contrôle de l’adaptation de la cellule tumorale à son micro-environnement. / Glioblastomas (GBMs) are the most common primary brain tumors in humans and remain essentially incurable. New advances in the knowledge of GBM molecular pathology and their key regulators are crucial to identify new putative ways for GBM therapy. Inositol Requiring Enzyme 1 α (IRE1α) is a transmembrane Endoplasmic Reticulum (ER)-resident protein acting as proximal sensor of the Unfolded Protein Response (UPR) in both physiological and pathological situations. IRE1α is a bivalent enzyme, displaying Ser/Thr kinase and endoribonuclease (RNase) activities in its cytosolic side. Recently, single mutations in IRE1α gene were detected in human cancers, including GBM, and IRE1α was proposed as a major contributor to tumor progression among protein kinases. In this work, we have shown that blockade of both IRE1α Ser/Thr kinase and RNase activities in U87-MG cells highly repressed tumor angiogenesis, blood perfusion and the expression of pro-angiogenic factors in human xenograft tumor models. This phenotypic change is adversely associated to the so-called "evasive response" of tumors cells. The cells began to migrate along pre-existing brain capillaries and invade healthy tissue (a process named blood vessel co-option). Moreover, this phenotype was shown to be functionally linked to the mesenchymal differentiation process. By using site-directed mutagenesis, we demonstrated that IRE1α protein modulates both angiogenesis and invasive processes through its two catalytic domains: IRE1α Ser/Thr kinase domain was essential for IRE1-mediated angiogenesis, whereas IRE1's RNase domain drove the invasive, co-opted phenotype. IRE1α is therefore identified as a key regulator of glioma progression, acting at the crossroads of major signaling networks in the control of tumor cell adaptation to its microenvironment.
2

Impact fonctionnel de mutations somatiques dans le gène ERN1 (IRE1ΑLPHA) dans les glioblastomes / Impact of functional somatic mutations in the gene ERN1 (IRE1ALPHA) in glioblastomas

Lhomond, Stephanie 25 April 2014 (has links)
Dans les cellules eucaryotes, des altérations du microenvironnement cellulaire ou desmutations des protéines de la voie de sécrétion induisent un stress du RE et activent uneréponse adaptative nommée UPR. Les signaux intracellulaires associés à l’UPR sont transmisde la lumière du RE vers le noyau par trois protéines transmembranaires dont IRE1α aussiappelée ERN1. Lors d'un stress du RE, IRE1α s'oligomérise, activant ses domaines kinase etendoribonucléase desquelles découle une signalisation intracellulaire complexe. Denombreuses études reliant l'UPR au cancer désignent IRE1α comme un acteur majeur de latumorigenèse, en particulier dans la croissance et la vascularisation des glioblastomes (GBM),bien que les mécanismes précis mis en jeu restent à déterminer. Des études menées dans notrelaboratoire ont identifié deux cibles de l'activité endoribonucléase d'IRE1α (RIDD) : SPARCet PER1, comme effecteurs respectifs des effets pro-migratoire, pro-angiogénique et proprolifératifd'IRE1α dans les GBM. De plus, ces dernières années, le séquençage d'IRE1α apermis d'identifier environ cinquante mutations, dont quatre non silencieuses ont étéidentifiées dans des biopsies de GBM. L'expression de ces quatre mutations, dont A414Tidentifiée dans le laboratoire, dans les cellules U-87 MG, et l'implantation de ces cellules dansle cerveau de souris a permis de mettre en évidence le rôle pro tumoral de la mutation A414Tet le rôle anti-tumoral de la mutation P336L. A414T stabilise les oligomères d'IRE1α, suractivantles voies de signalisation en aval et conduisant à une croissance plus rapide et unevascularisation plus importante des tumeurs. Ainsi, nos travaux confirment qu'IRE1α est unrégulateur central du développement des GBM et pourrait constituer un marqueur pronostic etune cible thérapeutique des GBM. / In eukaryotic cells, alterations in the cellular microenvironment or mutations in the protein secretory pathway induce ER stress and activate an adaptive response termed UPR. The intracellular signals associated with UPR are transmitted from the ER lumen to the nucleus by three transmembrane proteins among which IRE1α also called ERN1. During ER stress, IRE1α oligomerizes, activating its kinase and endoribonuclease domains and a downstream complex intracellular signaling. Many studies linking the UPR to cancer point to IRE1α as a major player in tumorigenesis, particularly in the growth and vascularization of glioblastomas (GBM), although the precise mechanisms involved remain to be determined. Studies led in our laboratory have identified two targets of IRE1α endoribonuclease activity (RIDD): SPARC and PER1 as respective effectors of pro–angiogenic, pro-migratory and proproliferative effects of IRE1α in GBM. In addition, in recent years, IRE1α sequencing identified around fifty mutations, four of which have been identified in GBM biopsies. The expression of these four mutations, including A414T identified in the laboratory, in the U-87 MG cells, and implantation of these cells into mouse brain has highlighted the pro-tumoral role of the A414T mutation and the anti-tumor role of the P336L mutation. A414T oligomers stabilize IRE1α, over-activating downstream signaling pathways and leading to a faster growth and greater tumor vascularization. Thus, our work confirms that IRE1α is a central regulator of GBM development and may be a prognostic marker and therapeutic target in GBM.
3

Peli1 Induction Impairs Cardiac Microvascular Endothelium Through Hsp90 Dissociation From IRE1α

Zhao, Qianwen, Yang, Jie, Chen, Hao, Li, Jiantao, Que, L., Zhu, Guoqing, Liu, Li, Ha, Tuanzhu, Chen, Qi, Li, Chuanfu, Xu, Yong, Li, Yuehua 01 October 2019 (has links)
Ameliorating cardiac microvascular injury is the most effective means to mitigate diabetes-induced cardiovascular complications. Inositol-requiring 1α (IRE1α), a sensor of endoplasmic reticulum stress, is activated by Toll like receptors (TLRs), and then promotes cardiac microvascular injury. Peli1 is a master regulator of TLRs and activates IRE1α. This study aims to investigate whether Peli1 in endothelial cells promotes diabetes-induced cardiac microvascular injury through activating IRE1α. Here we found that Peli1 was markedly up-regulated in cardiac endothelial cells of both diabetic mice and in AGEs-treated cardiac microvascular endothelial cells (CMECs). Peli1 deficiency in endothelial cells significantly alleviated diabetes-induced cardiac microvascular permeability, promoted microvascular regeneration, and suppressed apoptosis, accompanied by the attenuation of adverse cardiac remodeling. Furthermore, Peli1 deletion in CMECs ameliorated AGEs-induced damages in vitro. We identified heat shock protein 90 (Hsp90) as a potential binding partner for Peli1, and the Ring domain of Peli1 directly bound with Hsp90 to enhance IRE1α phosphorylation. Our study suggests that blocking Peli1 in endothelial cells may protect against diabetes-induced cardiac microvascular injury by restraining ER stress.
4

Les microARNs régulateurs de l’expression génique du Glypican-3 dans le Carcinome Hépatocellulaire / MicroRNAs regulators of Glypican-3 gene expression in hepatocellular carcinoma

Maurel, Marion 21 November 2012 (has links)
Le Glypican-3 (GPC3) est surexprimé dans 72% des carcinomes hépatocellulaire (CHC). C’est un co-récepteur membranaire du récepteur WNT, qui appartient à la famille des protéoglycanes à sulfates d'héparane. L'objectif général de ma thèse vise à étudier les mécanismes de régulation post-transcriptionnelle de l’expression du GPC3 dans le CHC. Pour cela, j’ai développé un test fonctionnel qui m’a permis de cribler une bibliothèque de 876 microARNs humains. Ceci a conduit à l’identification de 5 microARNs régulateurs de l’expression de l’ARNm codant pour le GPC3 via sa région 3’ non traduite (NT). Mon travail de thèse porte plus particulièrement sur le miR-1271 et le miR-1291 car ils sont dérégulés dans le CHC et sont respectivement inhibiteur et inducteur de l’expression du GPC3. Dans un premier projet, j’ai démontré que le miR-1271 cible directement la région 3’NT du GPC3 et diminue la stabilité de son ARNm. Ce microARN est sous-exprimé dans le CHC et son expression corrèle négativement avec celle de l'ARNm du GPC3 dans les CHC associés à une infection par le virus de l’hépatite B. Dans un deuxième projet, j’ai démontré que le miR-1291 régule positivement l’expression du GPC3 en inhibant un facteur intermédiaire. Une analyse in silico a permis d’identifier IRE1α comme candidat. IRE1α est une protéine transmembranaire du réticulum endoplasmique (RE) qui participe à « l’Unfolded Protein Response », une réponse adaptative activée lors de l’accumulation de protéines mal conformées dans le RE. J’ai démontré qu’IRE1α clive l’ARNm codant pour le GPC3 grâce à son activité endoribonucléase. D’autre part, le miR-1291 cible directement l’ARNm codant pour IRE1α dans sa région 5’NT ce qui inhibe son expression et induit une surexpression du GPC3. Le miR-1291 est surexprimé dans le CHC et son expression corrèle positivement avec celle de l’ARNm du GPC3. En conclusion, mon travail de thèse m’a permis de mettre en évidence et de caractériser deux nouveaux microARNs (miR-1271 et miR-1291) contrôlant l’expression du GPC3 par des mécanismes directs ou indirects. La pertinence physiopathologique de ces régulations dans le CHC est en accord avec les niveaux d’expression respectifs de ces microARNs, qui pourraient contribuer à la surexpression du GPC3 dans ces tumeurs. / Glypican-3 (GPC3) is overexpressed in 72% of hepatocellular carcinoma (HCC). It is a co-receptor for WNT receptor and belongs to the heparan sulfate proteoglycans family. The general objective of my PhD thesis was to study the mechanisms by which GPC3 is post-transcriptionnally regulated in HCC. To this end, I developed a functional test that allowed me to screen a library of 876 human microRNAs. This led me to identify 5 microRNAs that regulate the expression of GPC3 mRNA through its 3’Untranslated Region (UTR). The work presented in this thesis particulary focuses on miR-1271 and miR-1291 as both microRNAs present a deregulated expression in HCC and are respectively inhibitor and activator of GPC3 mRNA expression. In a first project, I demonstrated that miR-1271 directly binds to GPC3 mRNA 3’UTR and affects its stability. This microRNA is underexpressed in HCC and its expression negatively correlates with that of GPC3 mRNA in a subgroup of HCC corresponding to those associated with hepatitis B virus infection. In a second project, I demonstrated that miR-1291 postively regulates the expression of GPC3 mRNA by targeting an intermediate factor. An in silico analysis led to the identification of the Inositol Requiring Enzyme 1 alpha (IRE1α) as a potential candidate. IRE1α is an endoplasmic reticulum (ER) resident type I transmembrane protein and contributes to the signaling of the Unfolded Protein Response (UPR). The UPR is an adaptive response activated upon accumulation of improperly folded proteins in the ER. I showed that IRE1α cleaves GPC3 mRNA through its endoribonuclease activity. Moreover I demonstrated that miR-1291 directly targets IRE1α mRNA through its 5’UTR, thereby decreasing its expression and contributing to GPC3 mRNA overexpression. MiR-1291 is overexpressed in HCC and its expression positively correlates with that of GPC3 mRNA. In summary, the work carried out during my PhD allowed the identification and the characterization of two new microRNAs (miR-1271 and miR-1291) that control the expression of GPC3 mRNA through direct or indirect mechanisms. The pathophysiological relevance of these regulatory mechanisms is in agreement with the respective expression levels of these microRNAs in HCC, which could therefore contribute to the overexpression of GPC3 in those tumors.
5

Rôles du stress du réticulum endoplasmique et de Bax Inhibitor-1 dans les complications hépatiques liées à l’obésité / The roles of endoplasmic reticulum stress and Bax inhibitor-1 in non-alcoholic fatty liver disease

Lebeaupin, Cynthia 26 April 2018 (has links)
La pandémie de l'obésité entraine une augmentation de la prévalence des maladies chroniques du foie ou stéatopathies métaboliques (NAFLD). Le spectre des NAFLD va de la stéatose caractérisée par une accumulation de lipides dans le foie à la stéatohépatite (NASH) associant une inflammation, de la mort hépatocytaire et de la fibrose. Lors de l'obésité, l'élévation de signaux de dangers métaboliques perturbe les fonctions du réticulum endoplasmique (RE) essentielles pour l’homéostasie cellulaire. Les perturbations sont transmises par 3 senseurs : IRE1α, ATF6 et PERK pour activer une réponse adaptative. Si ce stress est sévère ou devient chronique, la cellule enclenchera une réponse terminale apoptotique. La protéine Bax Inhibitor-1 (BI-1) pourrait jouer un rôle hépatoprotecteur en inhibant l’hyperactivation de la voie de signalisation IRE1α.En combinant des études chez l’homme et dans des modèles animaux, l’objectif de cette étude était de mieux caractériser l'activation chronique du stress du RE dans les NAFLD. Ce travail a émis l’hypothèse qu’une déficience en BI-1 entrainerait l’activation soutenue de la voie IRE1α qui serait responsable de la transition de la stéatose à la NASH. Cette étude s'intéresse au dialogue potentiel entre le stress du RE et l’activation de l'inflammasome NLRP3, qui induit la sécrétion des cytokines pro-inflammatoires (IL-1β, IL-18) grâce aux caspases pro-inflammatoires (caspase-1, caspase-4/11). L’utilisation d’un inhibiteur global du stress du RE ou des inhibiteurs pharmacologiques spécifiques à la voie IRE1α améliorerait les caractéristiques pathophysiologiques de la NASH et pourrait ouvrir de nouvelles perspectives thérapeutiques. / Due to the obesity pandemic, the last decades have been marked by a constantly increasing prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD covers a spectrum of hepatic disorders ranging from steatosis, characterized by the ectopic accumulation of lipids in the liver, to steatohepatitis (NASH), featuring inflammation, hepatocellular death and fibrosis. During obesity, an increase in metabolic danger signals leads to disrupted endoplasmic reticulum (ER) function, essential for cellular homeostasis. The resulting ER stress activates a signaling network involving three sensors: IRE1α, ATF6 and PERK to enforce adaptive programs. If this stress is severe or becomes chronic, the cell will trigger a terminal apoptotic response. The protein Bax Inhibitor-1 (BI-1), as a negative endogenous regulator of the IRE1α signaling pathway in the liver, may play a hepatoprotective role.By combining data from obese patients with liver complications and experimental approaches in mice, this thesis aimed to better characterize the chronic activation of ER stress in NAFLD pathogenesis. This work also emitted the hypothesis that a deficiency in BI-1 leads to unrestrained IRE1α signaling that may be responsible for the steatosis to NASH transition. This study further investigated the potential dialogue between ER stress and the activation the NLRP3 inflammasome, which induces the secretion of pro-inflammatory cytokines (IL-1β, IL-18) by activating pro-inflammatory caspases (caspase-1, caspase-4/11). The administration of a broad spectrum ER stress inhibitor or specific inhibitors of IRE1α improved the pathophysiological features of NASH and may open novel therapeutic perspectives.
6

Le médicament épigénétique 5-Azacytidine stabilise l’ARN messager du récepteur des lipoprotéines de basse densité (LDLR) via une voie IRE1α/EGFR/ERK1/2- dépendante

Mnasri, Nourhen 08 1900 (has links)
No description available.
7

Les rétinopathies ischémiques prolifératives : étude des régulateurs de l’inflammation dans l’angiogenèse pathologique

Mawambo Tagne, Gaëlle Stéphanie 02 1900 (has links)
Les rétinopathies ischémiques prolifératives telles que la rétinopathie diabétique proliférative et la rétinopathie du prématuré sont les principales causes de la perte de la vision dans la population active et pédiatrique des pays industrialisés. Malgré le fait que les événements initiateurs sont différents et propres à chacune des pathologies, les rétinopathies ischémiques prolifératives sont le résultat d’un processus biphasique. On a d’abord une phase initiale de dégénérescence microvasculaire suivie d’une néovascularisation excessive et pathologique de la rétine hypoxique qui tente de réinstaurer l’apport en nutriments et en énergie. Mais au lieu d’aller revasculariser les zones avasculaires de la rétine, ces nouveaux vaisseaux sanguins sont mal orientés et se dirigent plutôt vers le vitré normalement avasculaire. Ceci provoque des tensions physiques dans la rétine et mène à long terme à son détachement et une perte de vision conséquente. Les traitements actuels ne viennent pas sans effets secondaires majeurs. Par exemple, la formation de la cataracte et l’augmentation de la pression intraoculaire avec l’utilisation des corticostéroïdes ou la perte de la vision partielle dans le cas du traitement au laser sont fréquemment observées. De même, la thérapie anti-VEGF (Vascular endothelial growth factor) apporte aussi son lot de complications, telles que la thromboembolie veineuse et l’augmentation de la neurotoxicité après un long usage, vu les propriétés neuro- et vaso-protectrices du VEGF. Le développement d’une nouvelle approche thérapeutique pour les rétinopathies ischémiques prolifératives est donc nécessaire afin de contrer ces limitations thérapeutiques. Dans notre première étude, nous mettons en évidence un nouveau mécanisme par lequel les cellules neuronales sous stress diabétique sont à l’origine d’une forte inflammation oculaire. Nos résultats démontrent que le co-récepteur multi-ligand Neuropiline-1, le VEGF et la Sémaphorine-3A agissent de concert afin d’attirer une sous-population particulière de phagocytes mononucléaires susceptibles d’activer le processus de croissance vasculaire pathologique dans la rétine diabétique. De plus, notre étude propose une base pour de futures recherches sur l’impact des phagocytes mononucléaires exprimant Neuropiline-1 dans les pathologies du système nerveux central caractérisées par une inflammation excessive. Nos résultats permettent aussi de mettre en lumière le caractère anti-inflammatoire potentiel des thérapies actuelles anti-VEGF (à cause du rôle de VEGF dans la mobilisation des phagocytes mononucléaires via Neuropiline-1) au niveau oculaire. Dans notre deuxième étude, nous mettons en évidence l’activation du facteur HIF1α dans les phagocytes mononucléaires présents dans la rétine hypoxique. L’utilisation d’une approche protéomique non biaisée de spectrométrie de masse en tandem nous a permis d’identifier les partenaires interagissant avec HIF1α dans un milieu déficient en oxygène. Nous avons pu ainsi déterminer pour la première fois l’association entre la voie d’HIF1α et celle d’IRE1α (un des trois senseurs de la voie de l’UPR « unfolded protein response ») dans le processus d’adaptation à l’oxygène des phagocytes mononucléaires. Nos résultats révèlent ensuite l’importance d’IRE1α (plus principalement son activité kinase) dans la production d’HIF1α. Nous démontrons finalement que la synergie entre les signalisations d’IRE1α et HIF1α pourrait être responsable du comportement pathogénique des phagocytes mononucléaires via leur libération de cytokines inflammatoires; ce qui participerait ainsi à la progression des rétinopathies. Collectivement, nos travaux ont permis d’identifier d’importants régulateurs de l’activité pathogénique des phagocytes mononucléaires. Nous montrons : 1) le rôle de Neuropiline-1 dans l’infiltration des phagocytes mononucléaires au niveau des zones endommagées de la rétine et 2) l’impact du mécanisme convergent entre les voies d’IRE1α et HIF1α sur leur sécrétion de facteurs pro-inflammatoires durant les rétinopathies. Nos résultats offrent une base pour le développement de nouvelles stratégies thérapeutiques (ciblant Neuropiline-1, IRE1α et HIF1α) dans le traitement de maladies oculaires et d’autres pathologies caractérisées par une inflammation excessive. / Proliferative ischemic retinopathies such as proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are the principal causes of vision loss in working age and pediatric populations of industrialized countries. Although they display different initial triggers, proliferative ischemic retinopathies are biphasic ocular diseases that affect retinal vessels. There is an initial degeneration of the microvasculature, followed by a hypoxic stress on the retina. This triggers a second phase of deregulated and destructive blood vessel growth within the retina. Given this sequence of events and prominent clinical features, the currently most widely used local ocular therapeutic interventions directly target pathological blood vessel growth, yet present a number of non-desirable off-target effects such as the destruction of the retina itself. In fact, currently available treatments for proliferative ischemic retinopathies present non-negligible side effects, such as cataract formation with intravitreal use of corticosteroid or reduced visual field with laser-based photocoagulation surgery. Similarly, the anti-VEGF (Vascular endothelial growth factor) therapy may be associated with thromboembolic events, neuronal toxicity and atrophy when used as frequent long-term treatment given the fact that VEGF serves a vaso- and neuro-protective factor in the retina. Overcoming these therapeutic limitations and exploring novel pharmacological avenues are therefore required to ameliorate the safety profiles of current interventions. In our first study, we describe a novel mechanism by which severely stressed neuronal cells in the diabetic retina provoke destructive inflammation in the eye. We demonstrate that the multi-ligand co-receptor Neuropilin-1, VEGF and Semaphorin3A act as potent attractants for a specialized population of immune cells (mononuclear phagocytes) that later promote the exaggerated pathological vessel growth associated with the disease progression. Importantly, we provide evidence for a novel pharmacological intervention that reduces the inflammation associated with pathological retinal vessel growth. Our findings also suggest that current anti-VEGF therapies (a popular treatment for ocular vascular diseases) may in part be effective by reducing destructive ocular inflammation. In our second study, we provide evidence that those mononuclear phagocytes activate HIF1α in the hypoxic and inflamed retina. After using the unbiased proteomic approach of tandem mass spectrometry, we were able to identify HIF1α partners and found a novel link between HIF1α and the UPR (unfolded protein response) sensor IRE1α. Our data next established the crucial role of IRE1α (precisely via its kinase activity) in HIF1α production. We also suggested that the synergy between IRE1α and HIF1α pathways may be responsible of the pathogenic activity of the hypoxic mononuclear phagocytes via their secretion of inflammatory cytokines, thus contributing to the progression of the retinopathy. Collectively, our work identifies important regulators of the pathogenic activity of mononuclear phagocytes. We show that: 1) Neuropilin-1 promotes the infiltration of mononuclear phagocytes in the retina and 2) the convergent mechanism between IRE1α and HIF1α pathways is responsible for their release of pro-inflammatory factors during retinopathy. Our results could be used as a basis for the development of alternative therapeutic strategies (targeting Neuropilin-1, IRE1α and HIF1α) to treat ocular diseases or other pathologies characterized by an excessive inflammation.

Page generated in 0.0259 seconds