• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of OPC migration : improving remyelination potential in multiple sclerosis

Peeva, Elitsa Radostinova January 2018 (has links)
In the brain, axons are wrapped by myelin sheaths which ensure fast saltatory conduction of impulses and provide metabolic support. In multiple sclerosis (MS), the myelin sheaths are lost which leaves the axon denuded. This not only results in slower conduction of action potentials, but if prolonged, can also lead to axon death due to the loss of metabolic support. This neurodegeneration is the main cause of permanent disability in multiple sclerosis patients. The axon death and disability which stem from it could be prevented by restoring the myelin wrap before axon damage has occurred. This remyelination process is carried out by oligodendrocyte precursor cells which are present throughout life. To remyelinate, OPCs migrate to the area of damage and differentiate into myelinating oligodendrocytes which ensheathe axons with new myelin. In multiple sclerosis, this process occurs but is insufficient to overcome the damage. Therefore, central to the therapeutic efforts in multiple sclerosis is the aim to improve endogenous remyelination. Enhancing recruitment of oligodendrocyte precursor cells (OPCs) to the areas of damage is a clinically unexplored target. To investigate the therapeutic potential of OPC recruitment modulators, I have looked at 2 different targets involved in migration NDST1/HS and Sema3A/NP1. The first target, heparan sulfate (HS) is a proteoglycan which is important to OPC migration, investigated by Pascale Durbec's group in France. In a demyelinating mouse model, its key synthesising enzyme, NDST1, is upregulated by oligodendroglia in a belt around the lesion to aid OPC recruitment. Loss of NDST1 in oligodendrocytes was found to impair remyelination and reduce OPC migration in mice. In collaboration with them, I investigated the relevance of this molecule in post-mortem MS human tissue. I found that in human as well as mouse, NDST1 was primarily expressed by oligodendroglia. The protein level and the proportion of oligodendroglia expressing NDST1 was increased in MS compared to control indicating NDST1 upregulation as a disease response in human. We also found that low numbers of NDST1+ oligodendroglia correlate with bigger sizes of lesions and chronic lesion types that fail to repair, highlighting its importance in repair. Moreover, high numbers of NDST1+ cells in a patient correlated with increased remyelination potential. This indicates that in human, intra-patient variation in NDST1 level may explain differences in potential for endogenous repair. Secondly, I looked at Sema3A, a chemorepulsive molecule which is upregulated in demyelinated injury rodent models aswell as multiple sclerosis lesions, particularly in OPC-depopulated chronic active lesions. Research has consistently found that the level of Sema3A negatively correlates to remyelination because Sema3A hinders OPC migration. This has highlighted Sema3A as a potential target to improve OPC recruitment in MS however the size and shape of the molecule make it hard to design therapeutics against it. Therefore, I looked at its druggable receptor, Neuropilin 1 (NP1), to see whether inhibition of NP1 had the same positive effect on OPC recruitment and remyelination as lowering the level of Sema3A. NP1 is a tyrosine kinase receptor for both Sema3A and vascular endothelial growth factor (VEGF) and is found in many cell types. To check if NP1 inhibition is beneficial, I assessed remyelination in a mouse where the Sema3A binding site of NP1 has been mutated to prevent Sema3A binding and exerting its effect. This is a proxy for a (currently unavailable) ideal NP1 inhibitor of the Sema3A site only. Contrary to my expectations, OPC recruitment and remyelination in the mutant mice were not improved. However, the NP1 mutation resulted in an altered immune response. To exclude the possibility that no improvement in the OPC recruitment and remyelination of those mice was seen because it was negated by the altered immune response, I explored a cell specific mutant mouse in which NP1 was deleted in oligodendroglia only. In this mutant as well, I did not see improvement of OPC recruitment and remyelination. I therefore propose that Neuropilin 1 is not imperative for Sema3As action in remyelination and is not suitable as a therapeutic target in multiple sclerosis. Loss of the whole NP1, but not loss of the Sema3A site also resulted in biggermyelinated and unmyelinated axons as well as a different myelin thickness post remyelination. This showed that VEGF and the VEGF site on NP1 in oligodendroglia have a previously unknown but important role in determining axon size and myelin thickness which should be further investigated. To further elucidate those results in a simple system, I looked at how Sema3A, NP1-Sema3A inhibitors, VEGF and NP1-VEGF inhibitor affect OPC behaviour. I confirmed Sema3As chemorepulsive effect but also showed that at different concentrations it can improve proliferation and survival of OPCs. Inhibiting the Sema3A site and the VEGF site of NP1 by specific blocking antibodies also affects OPC proliferation and maturation. This suggested that NP1s ligands are involved in more than just OPC migration. In summary, this work supports the relevance of the mouse findings that NDST1 is upregulated in demyelination and important for repair for human illustrating that it might be a suitable therapeutic target to investigate. However, despite the importance of Sema3A in MS models, its only reported receptor, NP1, is not essential for Sema3As action. Therefore, it is an unsuitable therapeutic target. The fact that NP1 is an inappropriate drug target for MS is further demonstrated by the involvement of its ligands in multiple OPC behaviours both in positive and negative aspects.
2

Les rétinopathies ischémiques prolifératives : étude des régulateurs de l’inflammation dans l’angiogenèse pathologique

Mawambo Tagne, Gaëlle Stéphanie 02 1900 (has links)
Les rétinopathies ischémiques prolifératives telles que la rétinopathie diabétique proliférative et la rétinopathie du prématuré sont les principales causes de la perte de la vision dans la population active et pédiatrique des pays industrialisés. Malgré le fait que les événements initiateurs sont différents et propres à chacune des pathologies, les rétinopathies ischémiques prolifératives sont le résultat d’un processus biphasique. On a d’abord une phase initiale de dégénérescence microvasculaire suivie d’une néovascularisation excessive et pathologique de la rétine hypoxique qui tente de réinstaurer l’apport en nutriments et en énergie. Mais au lieu d’aller revasculariser les zones avasculaires de la rétine, ces nouveaux vaisseaux sanguins sont mal orientés et se dirigent plutôt vers le vitré normalement avasculaire. Ceci provoque des tensions physiques dans la rétine et mène à long terme à son détachement et une perte de vision conséquente. Les traitements actuels ne viennent pas sans effets secondaires majeurs. Par exemple, la formation de la cataracte et l’augmentation de la pression intraoculaire avec l’utilisation des corticostéroïdes ou la perte de la vision partielle dans le cas du traitement au laser sont fréquemment observées. De même, la thérapie anti-VEGF (Vascular endothelial growth factor) apporte aussi son lot de complications, telles que la thromboembolie veineuse et l’augmentation de la neurotoxicité après un long usage, vu les propriétés neuro- et vaso-protectrices du VEGF. Le développement d’une nouvelle approche thérapeutique pour les rétinopathies ischémiques prolifératives est donc nécessaire afin de contrer ces limitations thérapeutiques. Dans notre première étude, nous mettons en évidence un nouveau mécanisme par lequel les cellules neuronales sous stress diabétique sont à l’origine d’une forte inflammation oculaire. Nos résultats démontrent que le co-récepteur multi-ligand Neuropiline-1, le VEGF et la Sémaphorine-3A agissent de concert afin d’attirer une sous-population particulière de phagocytes mononucléaires susceptibles d’activer le processus de croissance vasculaire pathologique dans la rétine diabétique. De plus, notre étude propose une base pour de futures recherches sur l’impact des phagocytes mononucléaires exprimant Neuropiline-1 dans les pathologies du système nerveux central caractérisées par une inflammation excessive. Nos résultats permettent aussi de mettre en lumière le caractère anti-inflammatoire potentiel des thérapies actuelles anti-VEGF (à cause du rôle de VEGF dans la mobilisation des phagocytes mononucléaires via Neuropiline-1) au niveau oculaire. Dans notre deuxième étude, nous mettons en évidence l’activation du facteur HIF1α dans les phagocytes mononucléaires présents dans la rétine hypoxique. L’utilisation d’une approche protéomique non biaisée de spectrométrie de masse en tandem nous a permis d’identifier les partenaires interagissant avec HIF1α dans un milieu déficient en oxygène. Nous avons pu ainsi déterminer pour la première fois l’association entre la voie d’HIF1α et celle d’IRE1α (un des trois senseurs de la voie de l’UPR « unfolded protein response ») dans le processus d’adaptation à l’oxygène des phagocytes mononucléaires. Nos résultats révèlent ensuite l’importance d’IRE1α (plus principalement son activité kinase) dans la production d’HIF1α. Nous démontrons finalement que la synergie entre les signalisations d’IRE1α et HIF1α pourrait être responsable du comportement pathogénique des phagocytes mononucléaires via leur libération de cytokines inflammatoires; ce qui participerait ainsi à la progression des rétinopathies. Collectivement, nos travaux ont permis d’identifier d’importants régulateurs de l’activité pathogénique des phagocytes mononucléaires. Nous montrons : 1) le rôle de Neuropiline-1 dans l’infiltration des phagocytes mononucléaires au niveau des zones endommagées de la rétine et 2) l’impact du mécanisme convergent entre les voies d’IRE1α et HIF1α sur leur sécrétion de facteurs pro-inflammatoires durant les rétinopathies. Nos résultats offrent une base pour le développement de nouvelles stratégies thérapeutiques (ciblant Neuropiline-1, IRE1α et HIF1α) dans le traitement de maladies oculaires et d’autres pathologies caractérisées par une inflammation excessive. / Proliferative ischemic retinopathies such as proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are the principal causes of vision loss in working age and pediatric populations of industrialized countries. Although they display different initial triggers, proliferative ischemic retinopathies are biphasic ocular diseases that affect retinal vessels. There is an initial degeneration of the microvasculature, followed by a hypoxic stress on the retina. This triggers a second phase of deregulated and destructive blood vessel growth within the retina. Given this sequence of events and prominent clinical features, the currently most widely used local ocular therapeutic interventions directly target pathological blood vessel growth, yet present a number of non-desirable off-target effects such as the destruction of the retina itself. In fact, currently available treatments for proliferative ischemic retinopathies present non-negligible side effects, such as cataract formation with intravitreal use of corticosteroid or reduced visual field with laser-based photocoagulation surgery. Similarly, the anti-VEGF (Vascular endothelial growth factor) therapy may be associated with thromboembolic events, neuronal toxicity and atrophy when used as frequent long-term treatment given the fact that VEGF serves a vaso- and neuro-protective factor in the retina. Overcoming these therapeutic limitations and exploring novel pharmacological avenues are therefore required to ameliorate the safety profiles of current interventions. In our first study, we describe a novel mechanism by which severely stressed neuronal cells in the diabetic retina provoke destructive inflammation in the eye. We demonstrate that the multi-ligand co-receptor Neuropilin-1, VEGF and Semaphorin3A act as potent attractants for a specialized population of immune cells (mononuclear phagocytes) that later promote the exaggerated pathological vessel growth associated with the disease progression. Importantly, we provide evidence for a novel pharmacological intervention that reduces the inflammation associated with pathological retinal vessel growth. Our findings also suggest that current anti-VEGF therapies (a popular treatment for ocular vascular diseases) may in part be effective by reducing destructive ocular inflammation. In our second study, we provide evidence that those mononuclear phagocytes activate HIF1α in the hypoxic and inflamed retina. After using the unbiased proteomic approach of tandem mass spectrometry, we were able to identify HIF1α partners and found a novel link between HIF1α and the UPR (unfolded protein response) sensor IRE1α. Our data next established the crucial role of IRE1α (precisely via its kinase activity) in HIF1α production. We also suggested that the synergy between IRE1α and HIF1α pathways may be responsible of the pathogenic activity of the hypoxic mononuclear phagocytes via their secretion of inflammatory cytokines, thus contributing to the progression of the retinopathy. Collectively, our work identifies important regulators of the pathogenic activity of mononuclear phagocytes. We show that: 1) Neuropilin-1 promotes the infiltration of mononuclear phagocytes in the retina and 2) the convergent mechanism between IRE1α and HIF1α pathways is responsible for their release of pro-inflammatory factors during retinopathy. Our results could be used as a basis for the development of alternative therapeutic strategies (targeting Neuropilin-1, IRE1α and HIF1α) to treat ocular diseases or other pathologies characterized by an excessive inflammation.
3

Development and Implementation of Multi-Cued Guidance Strategies for Axonal Regeneration

McCormick, Aleesha Marie January 2014 (has links)
No description available.

Page generated in 0.0481 seconds