Today, the availability of methods for the activity-preserving and cost-efficient downstream processing of enzymes forms a major bottleneck to the use of these valuable tools in technical processes. A promising technology appears to be foam fractionation, which utilizes the adsorption of proteins at a gas–liquid interface. However, the employment of surfactants and the dependency of the applicability on individual properties of the target molecules are considerable drawbacks. Here, we demonstrate that a reversible fusion of the large, surface-active protein Ranaspumin-2 (Rsn-2) to a β-lactamase (Bla) enabled both surfactant-free formation of a stable foam and directed enrichment of the enzyme by the foaming. At the same time, Bla maintained 70% of its catalytic activity, which was in stark contrast to the enzyme without fusion to Rsn-2. Rsn-2 predominantly mediated adsorption. Comparable results were obtained after fusion to the structurally more complex penicillin G acylase (PGA) as the target enzyme. The results indicate that using a surface-active protein as a fusion tag might be the clue to the establishment of foam fractionation as a general method for enzyme downstream processing.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:91478 |
Date | 30 May 2024 |
Creators | Krause, Thomas, Keshavarzi, Behnam, Dressel, Jannes, Heitkam, Sascha, Ansorge-Schumacher, Marion B. |
Publisher | Wiley-VCH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1860-7314, 2200271, 10.1002/biot.202200271 |
Page generated in 0.0022 seconds