"This research effort addresses key challenges associated with the technical review and acceptance of performance-based design approaches to fire safety engineering through development of a decision support framework and associated tool. Such design approaches seek to confirm that the overall fire safety system, which includes the building and its protective features, meets a set of fire safety objectives established by relevant stakeholders, and this confirmation is achieved through fire safety analysis, or the application of analytical and computational tools and methods. While the current approach to performance-based fire safety analysis relies on guidelines and standards, these rather generic, process-oriented documents do not provide fire protection engineers (FPEs) sufficient guidance to address critical elements of the analysis process in a systematic, consistent and technically adequate manner. Should a fire safety analysis contain technical deficiencies, then it becomes less clear that the design solution being proposed truly achieves the desired fire safety objectives. Moreover, project stakeholders, including the authority having jurisdiction (AHJ), may lack the necessary qualifications, expertise, or design intimacy to, suitably and reliably, identify and challenge deficient analyses. As a result, the current approach to fire safety analysis and its quality assurance has led to large variations in analysis quality and consequently levels of delivered performance. With no existing equivalent, a decision support framework is proposed that will assist the AHJ and FPEs in determining whether a fire safety analysis is of sufficient technical adequacy to support decision-making, regulatory or otherwise. Additionally, a decision support tool is developed to provide measures of confidence regarding an analysis’s conclusions and assist in identifying those aspects of the analysis most requiring corrective action. Lastly, while developed to address performance-based design approaches to fire safety engineering, the framework may easily be adapted to similar approaches in other fields of engineering, or more generally, applications that make use of process-oriented, analysis-driven design."
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1490 |
Date | 19 December 2017 |
Creators | Ivans, Jr., William Jeffrey |
Contributors | Brian J. Meacham, Advisor, , , Nicholas A. Dembsey, Stephen Unwin |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Doctoral Dissertations (All Dissertations, All Years) |
Page generated in 0.0025 seconds