Return to search

Verlust perineuronaler Netze und Veränderungen Parvalbumin-immunreaktiver Zellen im Nucleus reticularis thalami nach experimentell induziertem Schlaganfall in Wildtyp- und triple-transgenen Mäusen

Schlaganfälle gehören zu den drei häufigsten Todesursachen und stellen das Gesundheitssystem vor große Herausforderungen. Behandlungsstrategien des ischämischen Schlaganfalls sind immer noch begrenzt, wobei enorme Anstrengungen in der präklinischen Forschung zwar erfolgreich waren, aber unter klinischen Bedingungen keine Effektivität zeigen konnten. Zu den Voraussetzungen einer Translation präklinischer Ergebnisse zählen klinisch relevante Schlaganfallmodelle sowie die Berücksichtigung potentieller Komorbiditäten und altersabhängiger Effekte. Eine umfassende Betrachtungsweise des schlaganfallbedingten Gewebeschadens gilt als vielversprechend, wie es das Konzept der neurovaskulären Einheit (neurovascular unit, NVU) erlaubt. Dieses Konzept beinhaltet Neurone, Gefäße und Gliazellen mit Astrozytenendfüßen, die in enger Beziehung zur extrazellulären Matrix (EZM) stehen. Die Rolle der EZM-Bestandteile während der Entwicklung von schlaganfallbedingten Gewebeschäden wird bislang nur wenig verstanden und kann daher nicht für Behandlungsstrategien genutzt werden.
Die bereits Ende des 19. Jahrhunderts erstmals von Camillo Golgi beschriebenen perineuronalen Netze (PN) sind ein wichtiger Bestandteil der EZM, die in vielen Hirnregionen zu finden sind. PN bilden eine aus Proteoglykanen, Glykoproteinen und Hyaluronsäure bestehende netzartige Struktur, die um Neurone und deren proximalen Dendriten sowie um die Initialsegmente von Axonen nachweisbar ist. Weitere Studien zeigten PN häufig als Umhüllung von inhibitorischen GABAergen Zellen, die das Kalzium-bindende Protein Parvalbumin und die Untereinheit des spannungsabhängigen Kaliumkanals Kv3.1b koexprimieren. Zu den diskutierten Funktionen gehört eine neuroprotektive Wirkung gegenüber neuropathologischen Veränderungen und oxidativem Stress, die Stabilisierung von Synapsen, die Kontrolle neuronaler Plastizität und eine Pufferfunktion um hochaktive Neurone.

Die vorliegende tierexperimentelle Studie fokussiert auf Veränderungen der PN als Teil der EZM und Parvalbumin-enthaltender GABAerge Neurone in Mäusen. Dabei lag der Schwerpunkt auf dem Nucleus reticularis thalami (NRT), der in enger Beziehung zur ischämischen Läsion steht, die durch ein Filament-basierendes Schlaganfallmodell induziert wurde. Der NRT erfüllt wichtige neurophysiologische Funktionen, z. B. bei der Regulation des Schlaf-Wach-Rhythmus. Die Neurone des NRT sind als GABAerg bekannt und von zahlreichen PN umhüllt.
Um PN darzustellen, können Lektine genutzt werden, die an N-Azetylgalaktosamin binden wie z. B. das Wisteria floribunda Agglutinin (WFA). Zum Nachweis der durch Ischämie induzierten Schädigung von Neuronen und Netzkomponenten dienten Immunfluoreszenztechniken. Um den Verlust von PN und die Veränderung von Parvalbumin-immunpositiven Neuronen abzubilden, wurden Färbeserien mittels einer Doppelmarkierung von WFA und Parvalbumin durchgeführt. Ausgewertet wurden insgesamt vier Tiergruppen mit je 7 Mäusen: 3- und 12-Monate alte Wildtyp-Mäuse und komorbide triple-transgene (3xTg) Mäuse mit Alzheimer-ähnlichen Veränderungen. Es erfolgten qualitative und semiquantitative Vergleiche zwischen der ischämischen und der nicht ischämischen Hemisphäre einen Tag nach Induktion des Schlaganfalls. Zur Überprüfung der statistischen Signifikanz kamen der Wilcoxon-Test und der Mann-Whitney-U-Test zur Anwendung. Ergänzend wurden durch Mehrfach-Fluoreszenzmarkierungen detektierte Veränderungen zusätzlicher Netzkomponenten sowie von neuronalen Markern des NRT qualitativ erfasst.

Einen Tag nach Induktion der Ischämie ergaben die semiquantitativen Analysen einen drastischen Verlust der PN im ischämischen NRT. Konkret zeigte die WFA-Markierung einen Verlust von Intensität und Zellzahl in allen 4 analysierten Tiergruppen. Die Zahl Parvalbumin-positiver Zellen im ischämischen NRT nahm ab, wobei sich die Intensität der Färbung von betroffener und nicht betroffener Hemisphäre nicht unterschied. Ältere Tiere zeigten eine deutliche Verringerung der Färbeintensität und der Fläche gegenüber jüngeren Tieren in Bezug auf Parvalbumin-Immunreaktivität und WFA-Bindung. Unter Berücksichtigung des genetischen Hintergrundes war die Fläche unabhängig verringert, wobei Wildtypen gegenüber transgenen Tieren in Bezug auf die Zellzahl einen stärkeren Verlust aufwiesen. Die Färbeintensität von Parvalbumin-positiven Zellen hingegen zeigte bei 3xTg Mäusen gegenüber Wildtypen eine geringe Zunahme auf.
Zusätzliche qualitative Analysen detektierten im NRT sowohl den Ischämie-induzierten Verlust von PN und im umgebendem Neuropil EZM-Immunreaktivität für Aggrecan und Neurocan als auch verringerte Immunreaktivität für Calbindin, die Kaliumkanal-Untereinheit Kv3.1b sowie die Glutamatdekarboxylase-Isoformen GAD65 und GAD67.
Zusammenfassend bestätigen die vorgelegten Daten PN als hochsensitive Bestandteile der EZM. Die Befunde favorisieren EZM-Bestandteile als vielversprechende Angriffspunkte für aussichtsreich erscheinende, künftige Behandlungsmethoden des ischämischen Schlaganfalls.:Inhaltsverzeichnis
1 Einleitung 1

2 Grundlagen 2
2.1 Pathophysiologie des ischämischen Schlaganfalls 2
2.2 Translation 4
2.3 Komorbidität 5
2.4 Neurovaskuläre Einheit 6
2.5 Perineuronale Netze 8
2.5.1 Chemischer Aufbau der perineuronalen Netze 9
2.5.2 Funktionen perineuronaler Netze 11
2.5.3 Verteilungsmuster im ZNS 13
2.6 Nucleus reticularis thalami 14

3 Zielstellung 15

4 Material und Methoden 16
4.1 Material 16
4.1.1 Versuchstiere 16
4.1.2 Chemikalien 17
4.1.3 Antikörper 18

4.2 Methoden 19
4.2.1 Gewebeaufarbeitung 19
4.2.2 Auswahl der Hirnschnitte 20
4.2.3 Immunhistochemie und indirekte Immunfluoreszenz 20
4.2.4 Lektinhistochemie 21
4.2.5 Fluoreszenz-Doppelmarkierung von perineuronalen Netzen und Parvalbumin 21
4.2.6 Fluoreszenz-Mehrfachmarkierungen für qualitativeAnalysen 22
4.2.7 Kontrollfärbungen 23
4.2.8 Mikroskopie und Bildgebung 23
4.2.9 Semiquantitative Auswertung 24

5 Ergebnisse 26

6 Diskussion 41
6.1 Technische Aspekte 41
6.2 Ischämie und GABAerge Neurone im NRT und anderen Hirnregionen 43
6.3 Schlaganfall-induzierte Veränderungen von perineuronalen Netzen des Nucleus reticularis thalami und anderer Hirnregionen 44
6.4 Perineuronale Netze bei anderen neuropathologischen Veränderungen 45
6.5 Abbau perineuronaler Netze mit Metalloproteinasen, Chondroitinasen und Aggrecanasen 47
6.6 Perineuronale Netze nach Ischämie 49

7 Zusammenfassung 51

8 Literaturverzeichnis 54
8.1 Abbildungs- und Tabellenverzeichnis 83

9 Erklärung über die eigenständige Abfassung der Arbeit 84

10 Danksagung 85

11 Curriculum Vitae 86

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23442
Date16 July 2018
CreatorsAppel, Simon
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds