Following the trends to diminish the fossil fuel energy production new technologies known for their renewable sources have become a signficant option for helping combat climate change and handle the current oil prices. These new technologies base their power production on already established physical principles that convert mechanical power to electrical power. Generators are the fundamental piece of machinery for electricity production. Among the various types of generators that exist, permanent magnet synchronous generators (PMSGs) are commonly used for renewable electricity production. At present, the most used magnets for PMSGs are alloys of neodymium, iron, and boron which form a tetragonal crystalline structure known as Neodymium magnets (NdFeB). These types of magnets contain rare-earth materials, which makes them highly non-sustainable materials. Research to find new magnet compositions to substitute rare earth magnets or to reduce the weight and increase the efficiency of PMSGs is currently being studied. One option is to use Alnico magnets. This thesis project explores this option. With the help of a finite element analysis (FEA) software (COMSOL Multiphysics), three types of Alnico grades 5, 8 and 9 were implemented in the rotor of a spoke type generator to study the load limits of the rotor magnets, and together with this observe the demagnetization and impact that it has on the power production of the generator, in two different scenarios: 1) When the generator is connected to a nominal load under normal conditions and 2) when the generator is connected to a nominal load after a short circuit (SC). The simulations provided an insight into the load limitations that the generator has by each type of Alnico studied. Alnico 9 showed to be the best candidate magnet from the three magnets implemented with less demagnetization and higher electrical power output, followed by Alnico 8, which presented a good electrical power output at the nominal load scenario. Regardless of the higher demagnetization of Alnico 5, it proved to be a better candidate than Alnico 8 at the SC scenario.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-395215 |
Date | January 2019 |
Creators | Lopez Gomez Partida, Fausto |
Publisher | Uppsala universitet, Elektricitetslära |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TVE-MFE ; 19007 |
Page generated in 0.0024 seconds