This thesis studies wave energy converters developed at Uppsala University. The wave energy converters are of point absorbing type with direct driven linear generators. The aim has been to study generator design with closed stator slots as well as offshore experimental studies. By closing the stator slots, the harmonic content in the magnetic flux density is reduced and as a result the cogging forces in the generator are reduced as well. By reducing these forces, the noise and vibrations from the generator can be lowered. The studies have shown a significant reduction in the cogging forces in the generator. Moreover, by closing the slots, the magnetic flux finds a short-cut through the closed slots and will lower the magnetic flux linking the windings. The experimental studies have focused on the motion of the translator. The weight of the translator has a significant impact on the power absorption, especially in the downward motion. Two different experiments have been studied with two different translator weights. The results show that with a higher translator weight the power absorption is more evenly produced between the upward and downward motion as was expected from the simulation models. Furthermore, studies on the influence of the changing active area have been conducted which show some benefits with a changing active area during the downward motion. The experimental results also indicate snatch-loads for the wave energy converter with a lower translator weight. Within this thesis results from a comparative study between two WECs with almost identical properties have been presented. The generators electrical properties and the buoy volumes are the same, but with different buoy heights and diameters. Moreover, experimental studies including the conversion from AC to DC have been achieved. The work in this thesis is part of a larger wave power project at Uppsala University. The project studies the whole process from the energy absorption from the waves to the connection to the electrical grid. The project has a test-site at the west coast of Sweden near the town of Lysekil, where wave energy systems have been studied since 2004.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-274635 |
Date | January 2016 |
Creators | Lejerskog, Erik |
Publisher | Uppsala universitet, Elektricitetslära, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1339 |
Page generated in 0.0017 seconds