A rapid growth of installed wind power capacity is expectedin the next few years. However, the siting of wind turbines ona large scale raises concerns about their environmental impact,notably with respect to noise. To this end, variable speed windturbines offer a promising solution for applications in denselypopulated areas like the European countries, as this designwould enable an efficient utilisation of the masking effect dueto ambient noise. In rural and recreational areas where windturbines are sited, the ambient noise originates from theaction of wind on the vegetation and about the listener's ear(pseudo-noise). It shows a wind speed dependence similar tothat of the noise from a variable speed wind turbine and cantherefore mask the latter for a wide range of conditions.However, a problem inherent to the design of these machines istheir proclivity to pure tone generation, because of theenhanced difficulty of avoiding structural resonances in themechanical parts. Pure tones are deemed highly annoying and areseverely regulated by most noise policies. In relation to thisproblem, the vibration transmission of structure-borne sound tothe tower of the turbine is investigated, in particular whenthe tower is stiffened at its upper end. Furthermore, sincenoise annoyance due to wind turbine is mostly a masking issue,the wind-related sources of ambient noise are studied and theirmasking potentials assessed. With this aim, prediction modelsfor wind-induced vegetation noise and pseudo-noise have beendeveloped. Finally, closely related to the effect of masking,is the difficulty, regularly encountered by local authoritiesand wind farm developers, to measure noise immission from windturbines. A new measurement technique has thus been developedin the course of this work. Through improving thesignal-to-noise ratio between wind turbine noise and ambientnoise, the new technique yields more accurate measurementresults. Keywords: Masking, vibration transmission, diffraction,ambient noise, pseudo-noise, cylindrical shell, perturbationmethods, structural mobility, acoustic outdoor measurement. / QC 20100616
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3100 |
Date | January 2001 |
Creators | Fégeant, Olivier |
Publisher | KTH, Byggnader och installationer, Stockholm : Institutionen för byggnader och installationer |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Meddelande. Inst. för byggnadsteknik, 0346-5918 ; 184 |
Page generated in 0.0022 seconds