Return to search

Conversion of pharmaceuticals and other drugs by fungal peroxygenases / Umsetzung von Pharmazeutika und psychoaktiven Substanzen mit pilzlichen Peroxygenasen

Over the recent years, increasing scientific attention has been paid to pharmaceuticals, other drugs and their metabolites. These substances are of particular interest because of their physiological, toxicological and ecotoxicological effects in the human body and respectively in the environment. Cytochrome P450 enzymes (P450s) play a key role in the conversion and detoxification of bioactive compounds including many pharmaceuticals and drugs. Most of these enzymes belong to the monooxygenases; they are intracellular and rather unstable biocatalysts that are difficult to purify and require expensive, complex cofactors, which alltogether hampers their use in isolated form. The investigations carried out here with fungal peroxygenases have shown that this enzyme sub-subclass (EC 1.11.2.x) has a promising potential for oxyfunctionalizations and can catalyze a variety of reactions typical for P450s. Peroxygenases are extracellular, i.e. secreted fungal enzymes with high stability, which merely need peroxide for function. Results obtained with the unspecific/aromatic peroxygenases (APOs) of Agrocybe aegerita, Coprinellus radians and Marasmius rotula have demonstrated that APOs catalyze numerous H2O2-dependent monooxygenations of pharmaceuticals and psychoactive drugs. Among them are i) the monooxygenation of aromatic compounds, ii) the benzylic hydroxylation of toluene derivatives, iii) the O-dealkylation of different ether structures including the scission of benzodioxoles (O-demethylenation) and esters as well as iv) the N-dealkylation of secondary and tertiary amines. The peroxygenases studied considerably differ in their substrate spectrum and the preferred positions of oxidation. This finding opens the possibility to develop in the future an “enzymatic toolbox“ on the basis of fungal peroxygenases for the oxyfunctionalization of pharmaceutically relevant compounds.

Mechanistic studies showed that (1) the monooxygenations always proceed via incorporation of one oxygen atom from the peroxide, (2) the demethylation of phenacetind1 established a deuterium isotope effect similar to P450s, (3) the catalytic efficiencies for the studied oxidations are in the same range as those of P450s (though the kcat- and Km values are noticeably higher), (4) the kinetic studies with nitro-1,3-benzodioxole gave parallel double reciprocal plots suggestive of a “ping pong” mechanism, (5) the substrate spectrum and the activity pattern of APOs follows in a wide range those of the human key P450s as well as that (6) the difference spectra obtained in bindings studies are of the phenol type of P450s. Furthermore, APOs were found to be stable and active in long term experiments over two weeks and they oxidized pharmaceuticals at low, environmentally relevant concentration (ppb range). All the above properties strongly indicate that APOs respresent an interesting alternative for the enzymatic conversion of pharmaceuticals as well as for the preparation of human drug metabolites, for example, in medicinal and pharmacological research or the bioremediation sector (removal of pharmaceuticals from environmental media). / In den letzten Jahren sind Pharmazeutika und deren Metabolite mehr und mehr in den Fokus der Wissenschaft gerückt. Diese Substanzen sind aufgrund ihrer physiologischen und toxikologischen sowie ökotoxikologischen Wirkungen im menschlichen Körper bzw. in der Umwelt von besonderem Interesse. Cytochrom-P450-Enzyme (P450s) spielen eine Schlüsselrolle bei der Umsetzung und Detoxifizierung bioaktiver Substanzen, darunter vieler Pharmazeutika und Drogen. Es handelt sich bei diesen Enzymen in erster Linie um Monooxygenasen, die intrazellulär lokalisiert und relativ instabil sind; sie benötigen komplexe, teure Kofaktoren und sind nur unter hohem Aufwand zu reinigen, was ihre Anwendung in isolierter Form insgesamt erschwert. Die hier durchgeführten Untersuchungen zu pilzlichen Peroxygenasen haben gezeigt, dass diese Enzymsubklasse (EC 1.11.2.x) ein hohes Oxyfunktionalisierungspotenzial besitzt und eine Vielzahl P450-typischer Reaktionen zu katalysieren vermag. Peroxygenasen sind extrazelluläre, d.h. sekretierte Pilzenzyme, die eine hohe Stabilität aufweisen und lediglich ein Peroxid als Kosubstrat benötigen. Die unter Verwendung der unspezifischen/aromatischen Peroxygenasen (APOs) von Agrocybe aegerita, Coprinellus radians und Marasmius rotula gewonnenen Ergebnisse belegen, dass APOs verschiedene H2O2-abhängige Monooxygenierungen von Pharmazeutika und psychoaktiven Substanzen realisieren. Dazu gehören i) die Monooxygenierung von Aromaten, ii) die benzylische Hydroxylierung von Toluolderivaten, iii) die O-Dealkylierung verschiedener Etherstrukturen einschließlich der Spaltung von Benzodioxolen (O-Demethylenierung) und Estern sowie iv) die N-Dealkylierung von sekundären und tertiären Aminen. Die untersuchten Peroxygenasen wiesen teilweise deutliche Unterschiede im Substratspektrum und den präferierten Oxidationspositionen auf. Dieser Befund eröffnet die Möglichkeit, zukünftig einen „enzymatischen Werkzeugkasten“ auf Basis pilzlicher Peroxygenasen für die Oxyfunktionalisierung von pharmazeutisch relevanten Wirkstoffen zu entwickeln.

Mechanistische Experimente zeigten, dass (1) die Monooxygenierungen stets unter Einbau eines aus dem Peroxid stammenden Sauerstoffatoms erfolgen, (2) die Deethylierung von Phenacetin-d1 einen Deuteriumisotopeneffekt ähnlich dem der P450s aufweist, (3) die katalytischen Effizienzen für die untersuchten Oxidationen im gleichen Bereich wie die der P450s liegen (wobei die kcat- und Km-Werte deutlich höher ausfallen), (4) die kinetischen Untersuchungen zur Oxidation von Nitro-1,3-Benzodioxol parallele Verläufe der ermittelten Ausgleichsgeraden in der doppelt reziproken Darstellung ergaben, was für einen “Ping-Pong-Mechanismus“ spricht, (5) sich das Substratspektrum und die Aktivitätsmuster der APOs in einem weiten Bereich mit denen der wichtigsten menschlichen P450s decken sowie dass (6) die in Bindungsstudien gewonnenen Differenzspektren denen des Phenoltyps der P450s entsprechen. Desweiteren erwiesen sich APOs in Langzeitexperimenten über zwei Wochen als stabil und aktiv und sie waren in der Lage, Pharmazeutika in umweltrelevanten Konzentrationen (ppb-Bereich) zu oxidieren. All die genannten Eigenschaften legen nahe, dass APOs eine interessante Alternative zur enzymatischen Umsetzung von Pharmazeutika sowie zur Herstellung von humanen Pharmazeutika-Metaboliten darstellen, die z.B. Einsatz in der medizinischpharmakologischen Forschung oder im Umweltbereich (Entfernung von Pharmazeutika aus Umweltmedien) finden könnten.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-113339
Date17 June 2013
CreatorsPoraj-Kobielska, Marzena
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, IHI ZIttau - Zentrale Einrichtung der TU Dresden, Department für Bio- und Umweltwissenschaften, Prof. Dr. Martin Hofrichter, Prof. Dr. Martin Hofrichter, Prof. Dr. Kenneth E. Hammel, Prof. Dr.-Ing. Korneliusz Miksch
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds