Linewidth is a measure of the frequency stability of any kind of oscillator, and it is a defining characteristic of coherent lasers. Narrow linewidth laser technology, particularly in the field of fiber-based infrared lasers, has progressed to the point where highly stable sources are commercially available with linewidths on the order of 1-100 kHz. In order to achieve a higher level of stability, the laser must be augmented by an external frequency stabilization system.
This paper presents the design and operation of a frequency locking system for infrared fiber lasers. Using the Pound-Drever-Hall technique, the system significantly reduces the linewidth of an input laser with an un-stabilized linewidth of 2 kHz. It uses a high-finesse Fabry-Perot cavity, which is mechanically and thermally isolated, as a frequency reference to measure the time-varying frequency of the input laser. An electronic feedback loop works to correct the frequency error and maintain constant optical power. Testing has proven the Pound-Drever-Hall system to be highly stable and capable of operating continuously for several seconds at a time. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34739 |
Date | 03 October 2006 |
Creators | Lally, Evan M. |
Contributors | Electrical and Computer Engineering, Wang, Anbo, Safaai-Jazi, Ahmad, Brown, Gary S., Heflin, James R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | evlallyMSthesis.pdf |
Page generated in 0.0022 seconds