Zellen sind in der Lage, gleichzeitig ganz unterschiedliche biochemische Prozesse zu bewältigen. Dies gelingt ihnen durch eine Einteilung ihres Inneren in Kompartiemente, sogennante Organellen, die die jeweils geeignete biochemische Umgebung für die unterschiedlichen Aufgaben schaffen. Bei membranumschlossenen Kompartimenten ist leicht vorstellbar, dass sie eine andere biochemische Zusammensetzung als ihre Umgebung haben können. Jedoch existieren auch Organelle ohne Membran die durch eine flüssig-flüssig Phasenseparation entstehen. Manche dieser Kompartiemente haben die Fähigkeit, RNA zu binden und Proteinkomplexe auszubilden, während andere auf die Veränderungen innerhalb der Zelle, wie z.B. die Veränderung des pH-Werts und der damit Verbunden Änderung ihres Protonierungszustands, reagieren können. Um diese Prozesse theoretisch analysieren zu können, entwickeln wir zunächst ein allgemeingültiges, thermodynamisches Gerüst, um Systeme zu untersuchen, die im chemischen Gleichgewicht flüssig-flüssig hasensepariert
vorliegen können. Dies erlaubt, basierend auf den Erhaltungsgrößen, im chemischen Gleichgewicht thermodynamisch konjungierten Variablen zu identifizieren, welche aus den erhaltenen Komponenten und den zugehörigen chemischen Potentialen bestehen.
Mithilfe des obig erwähnten Gerüsts können wir den Einfluss des pH-Wertes auf die flüssig-flüssig Phasenseparation in einem minimalen Modell untersuchen. Dies beschreibt die makromolekulare Phasenseparation, kontrolliert durch Protonierungs- und Deprotonierungreaktionen, welche wiederum vom pH-Wert abhängig sind. Unsere Untersuchung der pH-Abhängigkeit der Phasenseparation kommt zu folgenden Ergebnissen: Erstens liegt die größte Region von Phasenseparation im Phasendiagramm typischerweise im Bereich des isoelektrischen Punkts. Zweitens zeigt das Modell eine Fähigkeit der erneuten Mischung auf. Drittens ist die Topologie des Phasendiagrams von der dominantesten Interaktion bestimmt. Unser Modell stimmt mit experimentellen Beobachtungen zur Phasenseparation von intrinsisch ungeordneten, Proteinen, deren Struktur sich pH abhängig verändern, überein. Das Modell ist außerdem konsistent mit Beobachtungen von Phasenseparation von Proteinen im Zytosol von Hefezellen, die entsteht, wenn der intrazellulare pH-Wert in die Nähe des isoelektrischen Punkt dieser Proteine gebracht wird. Des Weiteren geht diese Arbeit auf den physikalischen Mechanismus ein, mit dem flüssigkeitsähnliche Organellen, sog. P granules, im Organismus Caenorhabditis elegans positioniert werden. Um dieses Phänomen zu analysieren, stellen wir zunächst experimentelle Beobachtungen vor, die zeigen, dass PGL-3, eine Hauptkomponente der P granules, flüssigkeitsähnliche Tropfen bildet, deren Zusammensetzung von RNA moduliert werden kann. Darüber hinaus zeigen wir Daten, die großen Unterschiede zwischen der RNA-Bindungsaffinität von Proteinen wie Mex-5, die für die Positionierung der P granules relevant sind, und solchen, die P granules bilden, wie PGL-3, zeigen. Dies deutet darauf hin, dass eine Konkurrenz zwischen den Bestandteilen der P Granula und MEX-5 um die zur Bindung zur Verfügung stehende RNA besteht, die die Kondensation und Auflösung von P Granula räumlich kontrollieren könnte. Auf diesen experimentellen Befunden aufbauend führen wir ein minimalles Modell ein, in dem wir die Phasenseparation von
PGL-3 an Bindungsreaktionen der MEX-5 Proteine und RNA koppeln. Um die experimentellen Beobachtungen beschreiben zu können, muss die Neigung des PGL-3 Proteins zur Phasenseparation zunehmen, wenn es Komplexe mit RNA bildet. Dies unterstützt die Idee, dass MEX-5 diese Phasenseparation unterdrückt, indem es die Anzahl an möglichen RNA-Bindungspartner für PGL-3 herabsetzt und damit die weitere Entstehung derartiger Protein-RNA-Komplexe erschwert. Dieser einfache Mechanismus scheint die Hauptursache dafür zu sein, dass P granules auf der posterioren Seite des Caenorhabditis elegans Embryos zu finden sind. / One of the main features of cells is their incredible ability to control biochemical processes in space and time. They do so by organizing their interior in sub-compartments called organelles, each of them with a different biochemical environment that allows them to perform specific tasks in the cell. It is sometimes believed that these compartments need a membrane in order to have a stable biochemical environment and regulat their compositions. However, there are some organelles which lack a membrane and seem to form and organize via liquid-liquid phase separation. Some of the components that form these membraneless organelles have the ability to bind to RNA and form complexes, while some others react to changes in the intracellular environment such as pH variations, which in turn affects their protonation state. In order to study these processes from a theoretical perspective, we develop a generic thermodynamic framework to study systems exhibiting liquid-liquid phase separation at chemical equilibrium. This framework, based on the use of conservation laws in chemical reactions, allow us to identify thermodynamic conjugate variables at chemical equilibrium, which are given by a set of conserved quantities and the corresponding conjugate chemical potentials.
Within the aforementioned framework, we introduce a minimal model to study the effect of pH on liquid-liquid phase separation. Our model explains macromolecular phase separation controlled by protonation and deprotonation reactions, which are tuned by the pH of the system. We study the phase behavior of the system as a function of pH. Our main findings are: Firstly, the broadest region of phase separation is typically found at the isoelectric point. Secondly, the system exhibits reentrant behavior. Thirdly, that the dominating interaction in the system determines the topology of the phase diagrams. Our model is in agreement with experimental observations of in vitro protein phase separation of pH-responsive intrinsically disordered proteins, as well as with observations of protein phase separation exhibited by many cytosolic proteins when the intracellular pH in yeast cells is brought close to the isoelectric point of such proteins.
Moreover, this work analyses the physical mechanism behind the positioning of liquid-like organelles in the {\it{Caenorhabditis elegans}} organism known as P granules. In order to study this phenomenon, we first present firm experimental evidence showing that PGL-3 protein, a key component of P granules, forms liquid-like drops whose assembly can be modulated by RNA. We then present data showing that the RNA-binding affinity differs significantly between proteins relevant for the positioning of P granules, such as MEX-5 and the proteins forming the P granules, like the aforementioned PGL-3. This points to a possible mechanism of RNA-binding competition between P granule constituents and MEX-5 in order to spatially control the condensation and dissolution of P granules. Based on the experimental evidence, we propose a minimal model in which we couple phase separation of PGL-3 to a set of binding reactions involving the MEX-5 protein and RNA. We find that in order to explain the experimental data, the tendency for phase separation of the PGL-3 protein increases with the formation of complexes of PGL-3 bound to RNA. This therefore supports the idea that MEX-5 inhibits this protein phase separation by depleting the RNA available for PGL-3 to form such complexes. This simple mechanism is at the core of how P granules localize to the posterior side of the Caenorhabditis elegans embryo.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38576 |
Date | 28 February 2020 |
Creators | Adame Arana, Omar |
Contributors | Jülicher, Frank, Fazli, Hossein, Grill, Stephan Wolfgang, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds