Return to search

Analysis and entrapment of select antioxidants from chokecherry and Saskatoon berry fruits

The major objectives of this research were to produce a phenolic rich isolate from two locally grown Saskatchewan fruits, chokecherries and saskatoons, develop an encapsulation system for the phenolic isolate, and test this system for the delivery of the phenolic isolate in an animal (rat) model.
Natural phenolic compounds present in plants such as fruits have antioxidant and free radical scavenging activities, which have been proposed to have health benefits. The extraction of these compounds from plants is commonly performed using methanol despite being toxic to both humans and animals. As such, ethanol was investigated for its ability to extract phenolics from plants as a food safe alternative to methanol. Phenolic extraction from chokecherries with ethanol:formic acid:water (EFW) resulted in higher concentrations (9.83 mg gallic acid equivalents (GAE)/g fresh weight) than with methanol:formic acid:water (MFW) (7.97 mg GAE/g fresh weight). Results from saskatoons showed similar phenolic levels of 4.26 and 4.21 mg GAE/g fresh weight with MFW and ethanol (EFW), respectively. These results showed that EFW was a suitable substitute for MFW in phenolic compound isolation from chokecherries and saskatoons, and could be used to produce extracts that were safe for use in foods and feeds.
High performance liquid chromatography with photodiode array detection (HPLC-PDA) was used to determine the phenolic compound composition of the raw fruits and their phenolic rich isolates. Chlorogenic acid was identified in both chokecherry and saskatoon samples, and rutin was also shown to be present in saskatoons. These identifications were based on the relative retention time and ultra violet-visual spectra comparisons to standards. Solid phase extraction (SPE) using Amberlite XAD-16 was employed to produce phenolic isolates from chokecherries and saskatoons. HPLC-PDA results determined that there was a ~2.7x and ~1.6x increase in peak area for chokecherries and saskatoons, respectively when SPE was employed. The antioxidant activity of the extracts and isolates was determined using in vitro radical scavenging tests including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2´-azinobis-3-ethylbenzthiazoline-sulphonic acid (ABTS). The EFW chokecherry extract and isolate had the highest overall free radical scavenging activity. Crude fruit extracts exhibited lower free radical scavenging values compared to the isolate samples in both of the assays performed.
The fruit phenolic isolates were encapsulated in chitosan (CH) sodium tripolyphosphate (TPP) nanoparticles at a ratio of 4.0:1.0 (CH:TPP). HPLC-PDA was used to determine the entrapment efficiency of phenolic isolates to be 15.9 ± 2.7% and 23.0 ± 7.1% for chokecherries and saskatoons, respectively. Characteristics such as the size, surface potential and phenolic release were determined for the two fruit isolate containing nanoparticles. The size of the nanoparticles were 527.90 ± 74.57 nm and 443.03 ± 15.79 nm for chokecherries and saskatoons, respectively. Both of the nanoparticle systems had positive surface charges at 52.70 ± 2.93 mV and 54.43 ± 1.27 mV for chokecherries and saskatoons, respectively. The release properties of the CH:TPP nanoparticles containing fruit phenolics were examined in enzymatic simulated intestinal fluid and resulted in ~23% and ~28% release of chokecherry and saskatoon phenolics, respectively.
Saskatoon phenolic isolates and isolates encapsulated in CH:TPP were gavage fed to rats (six animals in each of the two groups) at a dosage rate of 276.36 ± 9.74 mg/kg body weight. The saskatoon isolate contained 12.44 ± 0.44 mg/kg body weight anthocyanins (~3.30 mg anthocyanin per rat). These animals were sacrificed after 1 h and all stomach tissue samples in each of the treatment groups contained detectable levels of anthocyanins. In the small intestine tissues all six of the saskatoon isolate and three of the encapsulated isolate groups had detectable amounts of anthocyanins, while in the large intestine tissue, only one sample from the isolate group showed detectable amounts of anthocyanins. Although other tissues were tested (brain, heart, kidney and liver), anthocyanins were not detected. Therefore anthocyanins were detected in the gastrointestinal tract of both of the treatment groups.
The research performed therefore illustrated that phenolic compounds can be extracted from fruit sources using EFW and can be successfully encapsulated in chitosan tripolyphosphate capsules allowing for targeted delivery in an animal model.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-05232011-185236
Date03 June 2011
CreatorsKonecsni, Kelly Alyson
ContributorsLow, Nicholas, Nickerson, Michael
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-05232011-185236/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0032 seconds