La photopolymérisation est une technologie qui gagne de plus en plus d’importance de par ses nombreuses applications et ses énormes avantages par rapport à la polymérisation thermique tels que le respect de l’environnement, des coûts économiques maitrisés car la technologie est mise en œuvre à température ambiante et ne requiert qu’une faible consommation d'énergie. De plus, elle n'utilise pas ou très peu de solvants, d'où la réduction d’émission de produits polluants. Le processus de polymérisation photochimique présente également l’avantage d’être très rapide : en effet les réactions de photopolymérisation sont souvent rapides voire même quasi instantanées. De plus le procédé de polymérisation devient photolatent : la polymérisation impliquant les formulations actives seulement en présence de lumière, la réaction peut être déclenchée « quasi à la demande ». Ce processus chimique nécessite des composants nommés « photoamorceurs », lesquels absorbent la lumière et produisent le démarrage de la réaction de polymérisation. En particulier, le développement de systèmes photoamorceurs capables d’absorber de la lumière visible a un intérêt croissant pour différentes applications industrielles, notamment l’holographie. Dans la cadre de cette thèse, des diverses systèmes photoamorceurs contenant un colorant et un ou deux co-amorceurs, qui après réaction avec les états excités des colorants génèrent les radicaux actifs, ont été étudiés, depuis leurs propriétés photophysiques fondamentales et moléculaires, jusqu’aux applications et performances pour la polymérisation des résines acrylates. Cette thèse est articulée autour de six chapitres. Dans le premier chapitre une introduction et une étude bibliographique des différents systèmes photoamorceurs développés ces dernières années sont présentées et comparés. Les chapitres deux et trois sont consacrés à l’étude des propriétés photochimiques et photophysiques réalisés sur des photoamorceurs absorbant de la lumière ultraviolette et visible respectivement. Les techniques utilisés dans ces chapitres incluent, mais ne sont pas limités à, la spectroscopie d’absorption UV-Vis stationnaire, la fluorescence, la photolyse éclaire (LFP), la fluorescence résolue en temps par comptage de photon unique (TC-SPC), la spectroscopie ultrarapide nanoseconde et femtoseconde, la spectroscopie de résonance paramagnétique électronique (EPR), entre autres. Le chapitre deux porte sur l’étude de la photophysique d’un colorant de type cyanine : l’astrazone Orange R (AO R). La photophysique de ce colorant n’est pas connue et une étude exhaustive a été menée avec des spectroscopies ultra rapides (femtoseconde) ainsi que par modélisation moléculaire. Malgré sa photophysique compliquée ce colorant, fonctionne comme un photoamorceur très efficace dans la région bleue du spectre électromagnétique. Les chapitres suivants forment une deuxième partie de la thèse dédiée à l’étude des mécanismes d’amorçage de photopolymérisation, dont le chapitre quatre aborde le cas d’irradiation le plus « traditionnel », qui est l’irradiation en mode continu (ou CW). Est ensuite abordé l’étude de la polymérisation sous irradiation pulsée ultra-courte : dans cette partie la source d’irradiation continue classique est remplacée par un laser Nd :Yag qui produit des impulsions lumineuses d’une durée de quelques 9-10 nanosecondes. Cette polymérisation avec laser pulsé ou PLP est très originale et sera étudiée par spectroscopie infrarouge à transformée de Fourier résolue en temps (RT-FTIR). Dans le chapitre trois, donc, on retrouve les études réalisés avec différents types de systèmes photoamorceurs visibles. Ainsi, les propriétés des colorants capables d’absorber de la lumière visible à différentes longueurs d’onde ont été étudiées dans des systèmes photoamorceurs à deux et trois composants. / Photopolymerization is a technology that is gaining more and more importance due to its numerous applications and its advantages compared to thermic polymerization. This chemical process requires compounds called photoinitiators, which absorb light and produce the initiation of the radical polymerization. The development of photoinitiating systems (PIS) which are able to absorb visible light have an increasing interest due to its industrial applications, such as holographic recording. During this thesis, many PIS were studied, from its photophysical properties to its application in acrylate polymerization. There are many different types of photoinitiators. The most classical ones are Type I PI, which are molecules that overcome homolytic cleavage from their excited state, generating initiating radicals immediately after photon absorption. Type II PI, in contrast, are composed by two molecules: one that absorbs the photon, and other that will react with the excited state of the first via electron transfer or hydrogen transfer, generating radicals that will be able to initiate polymerization. In last place, there are the most efficient Photocyclic Initiating Systems (PCIS) whose mechanism is more complicated and will be widely discussed within these pages. A state of the art of the PIS available up to date is made in the first chapter. Given the importance of the properties of the molecules involved in the photoinitiating process, the studies of the photophysical properties of a Photoinitiator, the Astrazone Orange (AO), are shown. It was found that this molecule suffers an isomerization process from its excited state, which then comes slowly back to the more stable conformer. This process being viscosity-dependent makes AO a suitable photoinitiator for polymerization with visible light in highly viscous media. The last three chapters of this thesis are devoted to the study of a novel technique called Pulsed Laser Polymerization (PLP). This technique consists in the irradiation of the samples with a short duration pulsed laser, which allows the separation of the initiation steps of the polymerization reaction from the steps of propagation and termination. A simple Type I PI was used as a model to study the properties of this technique of polymerization. The monomer conversion was registered by RT-FTIR and analyzed. To a better understanding of these results, a mathematical model was developed. Thanks to it, it was possible to collect valuable information about propagation and termination rate constants (kp and kt, respectively), the variation of viscosity with conversion and other aspects relatives to PLP mechanism. Furthermore, the efficiency of many visible light PIS was studied by PLP. Their performance was compared and studied and contrasted with the classical continuous irradiation mode (CW). The characteristics that a PIS must have in order to show efficient polymerization in PLP mode were found and discussed. Finally, the effect of formulation viscosity in PLP and CW was analyzed by diluting the sample with different amounts of DMSO. In PLP, it was seen that the highest conversion is found for the most concentrated samples, while the opposite effect is noticed in CW. This result is attributed to the different conditions given by the difference in irradiation methods.
Identifer | oai:union.ndltd.org:theses.fr/2015MULH9439 |
Date | 26 November 2015 |
Creators | Di Stefano, Luciano Héctor |
Contributors | Mulhouse, Allonas, Xavier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds