Return to search

The measurement, creation and manipulation of quantum optical states via photodetection

In this thesis, we demonstrate an array of photodetection theory and techniques bridging the traditional discrete and continuous variable experimental domains. In quantum optics, the creation and measurement of states of light are intertwined and we present experimental architectures considering both aspects. We describe the measurement of mean photon numbers at optical sideband frequencies using homodyne detection. We use our technique to provide a direct comparison to photon-counting measurements and observe that our technique exhibits superior speed, dynamic range and mode selectivity compared to photon counters. Our analysis also rejects a semiclassical description of the vacuum state, with our observations supporting the quantum mechanical model. We create a new means of describing the detection ???signatures??? of multi-port networks of non-photon-number discriminating detectors. Our model includes the practical effects of loss and dark counts. We use this model to analyse the performance of the loopand balanced- time-division-multiplexed detector architectures in a projective measurement role. Our analysis leads us to describe a prescriptive recipe for the optimisation of each architecture. In light of contemporary technology, we conclude the balanced TDM detector is the better architecture. Our analysis is then extended to the tomographic reconstruction of an unknown optical state using multi-port photon-counting networks. Our new approach is successfully applied to the reconstruction of the photon statistics of weak coherent states and demonstrates reduced error and sensitivity to experimental parameter variations than established techniques. We report the development of a source of quadrature squeezed vacuum at 1550 nm, and characterise the squeezing observed at the first 3 free spectral ranges of the downconversion cavity. This is then used as a source of frequency-entangled photons for a projective photon subtraction operation described by our earlier theory. We propose a new hybrid time/frequency domain approach to homodyne detection and illustrate its application in characterising the prepared state. Our output state has a statistically significant single photon contribution and permits future experimentation in frequency basis quantum information.

Identiferoai:union.ndltd.org:ADTP/258673
Date January 2009
CreatorsWebb, James, Engineering & Information Technology, Australian Defence Force Academy, UNSW
PublisherAwarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright

Page generated in 0.0073 seconds