La perspective d'une société utilisant l'énergie de la lumière du soleil pour séparer la molécule d'eau en dihydrogène et en dioxygène, ces deux gaz servant de moyens de stockage et de vecteurs d'énergie, nécessite de nombreux développements. En particulier, il est nécessaire de choisir un matériau pouvant absorber la lumière et transférer son énergie aux charges électriques afin de générer un courant électrique. Parmi toutes les possibilités, ce mémoire étudie l'applicabilité des bâtonnets semiconducteurs de tailles nanométriques constitués d'un cœur de séléniure de cadmium et d'une coquille de sulfure de cadmium. Profitant des méthodes décrites ces dernières années et d'une méthodologie de fonctionnalisation, les objets obtenus présentent une grande monodispersité et peuvent être dispersés en milieu aqueux. Les propriétés photoélectrochimiques des nanobâtonnets sont explorées par microscopie électrochimique. Cette méthode permet de déterminer s'il y a un transfert de charge entre des molécules en solution et un substrat constitué des bâtonnets, et le cas échéant son sens. Ainsi les nanoparticules, soumises à une excitation lumineuse, transfèrent des électrons vers les molécules dans l'ensemble des cas explorés, révélant ainsi un caractère plus réducteur que la para-benzoquinone. Ce transfert est réalisé d'autant plus rapidement que le rapport entre la longueur et le diamètre des bâtonnets augmente, jusqu'à un optimum, mais aussi que la taille de la couche organique isolante les recouvrant diminue, comme l'ont révélé des suivis de réduction d'une sonde rédox moléculaire colorée, la résazurine. Ces charges ont été mises à profit pour fonctionnaliser les nanoparticules, au travers de la réduction d'un pont disulfure ou d'un sel d'or. Enfin des stratégies ont été explorées pour permettre aux particules de réaliser la réduction photosensibilisée de l'eau, au travers de la synthèse d'une cobaloxime, un catalyseur moléculaire, ou de la réduction de sels métalliques à propriété catalytique tels que le cobalt et le nickel. / The development of a society based on solar energy requires a way to store it. One possibility consists in water splitting that needs a material to collect and transform the energy contained in light beam in an electric charges movement. Among all possibility, we hereby explore the applicability of nanometers-sized semiconductor rods composed of a cadmium selenide core and a cadmium sulfide shell. Based on methods already developed and a new functionalization methodology, the obtained particles exhibit a high monodispersity and can be dispersed in water, a useful property for the final purpose. Their photo-electrochemical properties have been explored by electrochemical microscopy that allowed to determine whether there is charge transfer between mediators in solution and quantum rods deposited as substrate and its direction. It reveals that under light irradiation and in all cases herein experimented, they transfer electrons to the mediators, making them more reductive than para-benzoquinone. This transfer is fastened when the ratio between the length and the diameter of the rods increased until an optimum, but also when the width of the organic isolating shell decreases, as revealed by time-resolved reduction of resazurin, a colored rédox molecular probe. These charge transfer have been used to functionalize particles by reduction of a disulfide bridge or a gold salt. Finally, strategies have been explored to make these quantum rods able to photosensibilized water reduction through synthesis of a cobaloxime, a molecular catalyst, or metal salt reduction as cobalt and nickel known to exhibit catalytic activity.
Identifer | oai:union.ndltd.org:theses.fr/2015REN1S048 |
Date | 12 November 2015 |
Creators | Boichard, Benoît |
Contributors | Rennes 1, Marchi, Valérie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds