This thesis investigates the electronic structure of iron phthalocyanine (Fe(II)Pc) andiron phthalocyanine chloride (Fe(III)PcCl) immobilized on surfaces. For this purposetwo different deposition methods are used and compared: smearing the molecularpowder under atmosphere condition and evaporation of a molecular layer inultra-high vacuum. The electronic states of FePc and FePcCl are probed withphotoelectron spectroscopy (PES) and compared in relation to the ionic state of thecentral metal (Fe). The PE spectra show that evaporation of FePcCl at around 350°Cresults in dissociation of the chlorine from the FePc molecule, which is stable at thistemperature. Mass spectroscopic measurements during heating of FePcCl in ultra-highvacuum (UHV) show a clear Cl signal for temperature still below 250°C. Theoreticalcalculations of the binding energy for Cl in FePcCl seem to indicate dissociation of theCl from the molecules.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-257183 |
Date | January 2015 |
Creators | Droschke, Sonja |
Publisher | Uppsala universitet, Molekyl- och kondenserade materiens fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 10021 |
Page generated in 0.0013 seconds