Return to search

Theoretical studies of microcavities and photonic crystals for lasing and waveguiding applications

This Licentiate presents the main results of theoretical study of light propagation in photonic structures, namely lasing disk microcavities and photonic crystals. In the first two papers (Paper I and Paper II) we present the developed novel scattering matrix technique dedicated to calculation of resonant states in 2D disk microcavities with the imperfect surface or/and inhomogeneous refractive index. The results demonstrate that the imperfect surface of a cavity has the strongest impact on the quality factor of lasing modes. The generalization of the scattering-matrix technique to the quantum-mecha- nical case has been made in Paper III. That generalization has allowed us to treat a realistic potential of quantum-corrals (which can be considered as nanoscale analogues of optical cavities) and to obtain a good agreement with experimental observations. Papers IV and V address the novel effective Green's function technique for studying propagation of light in photonic crystals. Using this technique we have analyzed characteristics of surface modes and proposed several novel surface-state-based devices for lasing/sensing, waveguiding and light feeding applications. / <p>Report code: LIU-TEK-LIC 2006:5</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-7482
Date January 2006
CreatorsRahachou, Aliaksandr
PublisherLinköpings universitet, Institutionen för teknik och naturvetenskap, Linköpings universitet, Tekniska högskolan, Institutionen för teknik och naturvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1224

Page generated in 0.0019 seconds