Return to search

Three-Dimensional Neuroepithelial Culture from Human Embryonic Stem Cells and Its Use for Quantitative Conversion to Retinal Pigment Epithelium

A goal in human embryonic stem cell (hESC) research is the faithful differentiation to given cell types such as neural lineages. During embryonic development, a basement membrane surrounds the neural plate that forms a tight, apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium, in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE) cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-191613
Date18 January 2016
CreatorsTanaka, Elly M., Zhu, Yu, Carido, Madalena, Meinhardt, Andrea, Kurth, Thomas, Karl, Mike O., Ader, Marius
ContributorsPublic Library of Science,
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article
Formatapplication/pdf
SourcePLOS ONE, Volume 8 (2013) Bd. 1, e54552, ISSN 1932-6203

Page generated in 0.0021 seconds