Return to search

Characterization of cell mismatch in photovoltaic modules using electroluminescence and associated electro-optic techniques

Solar cells allow the energy from the sun to be converted into electrical energy; this makes solar energy much more environmentally friendly than fossil fuel energy sources. These solar cells are connected together in a photovoltaic (PV) module to provide the higher current, voltage and power outputs necessary for electrical applications. However, the performance of the PV module is limited by the performance of the individual cells. Cell mismatch occurs when some cells are damaged or shaded and produce lower current output than the other cells in the series connected string. The cell mismatch lowers the module performance and can result in further damage as the weak cells are reverse biased and dissipate heat. Bypass diodes can be connected into the module to increase the module current output and prevent further damage. Since cell mismatch results in a significant decrease in the performance of deployed modules it is important to fully understand and characterise its effect on PV modules. PV modules can be characterised using various techniques, each providing important information about the performance of the module. Most commonly the current-voltage (I-V) characteristic curve of a module is measured in outdoor, fully illuminated conditions. This allows performance parameters such as short circuit current (Isc), open circuit voltage (Voc) and maximum power (Pmax) to be determined. In addition to this the shape of the curve allows device parameters like series and shunt resistances to be determined using parameter extraction algorithms like Particle Swarm Optimisation (PSO). The extracted parameters can be entered into the diode equation to model the I-V curve of the module. The I-V characteristic of the module can also be used to identify poor current producing cells in the module by using the worst-case cell determination method. In this technique a cell is shaded and the greater the drop in current in the whole module the better the current production of the shaded cell. The photoresponse of cells in a module can be determined by the Large-area Light Beam Induced Current (LA-LBIC) technique which involves scanning a module with a laser beam and recording the current generated. Electroluminescence (EL) is emitted by a forward biased PV module and is used to identify defects in cell material. Defects such as cracks and broken fingers can be detected as well as material features such as grain boundaries. These techniques are used to in conjunction to characterise the modules used in this study. The modules investigated in this study each exhibit cell mismatch resulting from different causes. Each module is characterised using a combination of characterisation techniques which allows the effect of cell mismatch be investigated. EL imaging enabled cracks and defects, invisible to the naked eye, to be detected allowing the reduced performance observed in I-V curves to be explained. It was seen that the cracked cells have a significant effect on the current produced by a string, while the effect of delaminated areas is less severe. Hot spots are observed on weak cells indicating they are in reverse bias conditions and will degrade further with time. PSO parameter extraction from I-V curves revealed that the effect of module degradation of device parameters like series and shunt resistances. A module with cracked cells and degradation of the antireflective coating has low shunt resistance indicating current losses due to shunting. Similar shunting is observed in a module with delamination and moisture ingress. The extracted parameters are used to simulate the I-V curves of modules with reasonable fit. The fit could be improved around the “knee” of the I-V curve by improving the methods of parameter extraction. This study has shown the effects of cell mismatch on the performance and I-V curves of the PV modules. The different causes of cell mismatch are discussed and modules with different cell configuration and damage are characterised. The characterisation techniques used on each module provide information about the photoresponse, current generation, material properties and cell defects. A comprehensive understanding of these techniques allows the cell mismatch in the modules to be fully characterized.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10545
Date January 2012
CreatorsCrozier, Jacqueline Louise
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatxii, 87 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0019 seconds