Les premières formes de vie sur Terre seraient apparues durant l’Archéen, il y a 4 à 2,5 milliards d’années. Durant cette période, les océans et l’atmosphère étaient anoxiques. Vers la fin de cet éon, la concentration en dioxygène a brusquement augmenté grâce à la photosynthèse, contribuant à la Grande Oxygénation de la Terre. Toutefois, en raison de la rareté des microorganismes fossiles connus, les métabolismes actifs à cette époque restent mal compris. Le fractionnement des isotopes stables du carbone est souvent utilisé comme un critère de biogénicité et pour l’appréciation des voies métaboliques présentes. Ces fractionnements peuvent être le résultat d’au moins six à huit voies de fixation du carbone. Pour étudier l’histoire évolutive des voies de fixation du carbone et de déterminer leur ordre d’émergence, j’ai appliqué une approche phylogénomique sur l’importante diversité microbienne récemment découverte. Le but était d’identifier les voies responsables des signatures isotopiques du carbone datant de l’éon Archéen inférieur (>3,2 milliards d’années). Le premier chapitre constitue une revue récente sur la diversité, l’écologie et l’évolution des Archaea. J’ai construit une phylogénie de référence des Archaea, robuste et incluant un nombre important de nouveaux génomes. Cette phylogénie m’a permis de mettre en évidence de nouveaux clades d’Archaea pour lesquels j’ai proposé des nouveaux noms. De plus, j’ai examiné la distribution des gènes marqueurs classiquement utilisés dans la taxonomie des Archaea. Dans le chapitre 2, j’ai assemblé différents jeux de données pour construire des phylogénies de référence pour les bactéries. Ceci m’a permis de discuter la classification au sein de ce domaine et la position de quelques groupes proches de la racine. Ces phylogénies des Archaea et Bacteria m’ont servi de cadre pour retracer l’évolution des voies de fixation du carbone. J’ai ensuite étudié la voie de Wood-Ljungdahl (WL) qui est considérée comme la forme la plus ancienne de fixation du carbone mais dont les origines restent encore controversées. J’ai assemblé des banques de données locales englobant 6400 génomes et couvrant toute la diversité connue des archées et des bactéries. Ces banques ont été utilisées pour des recherches exhaustives des homologues des enzymes de la branche carbonyle (chapitre 3) et méthyle basée sur la tétrahydrométhanoptérine (H4MPT; chapitre 4) de la voie de WL. Ces analyses m’ont permis d’inférer la présence d’une forme fonctionnelle de la branche carbonyle chez LUCA (Last Universal Common Ancestor). Cette voie a ensuite été héritée verticalement chez les archées et bactéries en gardant la co-localisation de ses gènes, à l’exception de quelques rares transferts intra et inter-domaines. La branche méthyle-H4MPT semble être apparue chez les archées puis transférée aux bactéries chez lesquelles elle serait impliquée dans la syntrophie ou l’assimilation du carbone. A la suite de gains et de pertes de gènes au sein de cette branche, elle a ensuite été successivement adaptée pour la méthylotrophie anaérobie, la détoxification du formaldéhyde, et la méthylotrophie aérobie. Ces résultats indiquant l’origine de la voie de WL à l’Archéen m’ont permis d’interpréter les signatures isotopiques du carbone et d’apporter des éléments sur la composition de l’atmosphère à la fin de cet éon. Enfin, dans le chapitre 5, j’ai étudié l’histoire évolutive des autres voies de fixation du carbone (Calvin-Benson-Bassham, Reductive Hexulose Phosphate, reverse Krebs, 3-hydroxypropionate bicycle, 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate). Mes résultats préliminaires m’ont permis de discuter la présence possible de ces voies pendant l’Archéen. / Life on Earth emerged during the Archean Eon (4-2.5 billion years ago). At the time the oceans and atmosphere were anoxic, and oxygen rose at the end of the Eon as a result of oxygenic photosynthesis, in what is known as the Great Oxygenation Event. Anaerobic microorganisms and metabolisms are expected to have operated at the time. However, the specifics are poorly understood, since the fossil record is scarce. The fractionation of stable carbon isotopes is often used as a criterion of biogenicity but also to interpret possible metabolic processes. Such fractionations can arise from at least six to eight different carbon fixation pathways. I took advantage of the newly available microbial diversity, and applied a phylogenomic approach to elucidate the evolutionary history of carbon fixation pathways, and determine their relative order of emergence. The aim was to deduce which ones would have been responsible for the isotopic signatures in the lower Archean (before 3.2 billion years). In the first Chapter, I reviewed the recent literature on the diversity, ecology, and evolution of Archaea. I constructed a well-resolved reference phylogeny taking into account all the novel lineages, for which genomic information has recently become available. I assigned names to some of them, as well as to some of the taxonomic units that were recovered from the phylogeny. Then I examined the distribution of genes that have been used in the past as taxonomic markers for the Archaea. Similarly, in Chapter 2, I constructed well-resolved bacterial phylogenies using different datasets, and used them to map the distribution of potential marker genes. I then discussed the taxonomic classification of Bacteria above phylum level, and the position of some possibly deep-branching phyla. From these endeavors, I gleaned highly resolved phylogenies of Bacteria and Archaea which were then used to map the evolution of carbon fixation pathways. Next, I analyzed the evolution of the Wood-Ljungdahl pathway. It is believed to be the most ancient form of carbon fixation but its origins have been controversial. I assembled local databanks of over 6400 genomes of Bacteria and Archaea encompassing all their known diversity. These were used to perform exhaustive homology searches for the components of the carbonyl (Chapter 3) and tetrahydromethanoperin (H4MPT; Chapter 4) methyl branches. A functional form of the carbonyl branch was found to date back to the Last Universal Common Ancestor. It was then inherited mostly vertically across Bacteria and Archaea with its genes remaining co-localized, except for a few rare intra and interdomain transfers. The H4MPT branch seems to have originated in Archaea and was subsequently transferred to Bacteria where its original role was probably related with hydrogen syntrophy or as a carbon assimilation electron sink. Afterward, through gene gains and losses linking the branch with other pathways, it came to be used in anaerobic methylotrophy and formaldehyde detoxification, and finally in aerobic methylotrophy. These results highlight a presence of the Wood-Ljungdahl pathway throughout the Archean, and also allow me to discuss possible inferences on the composition of the atmosphere and the interpretation of some late Archean carbon isotopic signatures.Finally, in Chapter 5, I attempt to determine the earliest possible origin for the remaining carbon fixation pathways (Calvin-Benson-Bassham, Reductive Hexulose Phosphate, reverse Krebs, 3-hydroxypropionate bicycle, 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate), by studying the evolution of their marker genes. I managed to deduce some possible constraints about the presence of these pathways in the Archean. My results contribute to expanding our knowledge on early life, the Last Universal Common Ancestor, and the evolution of carbon fixation. They also shed light on the processes on the Archean Earth from the perspective of microbial evolution.
Identifer | oai:union.ndltd.org:theses.fr/2018USPCC153 |
Date | 09 October 2018 |
Creators | Adam, Panagiotis |
Contributors | Sorbonne Paris Cité, Gribaldo, Simonetta |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0028 seconds