Schizophrenia spectrum disorders are characterized by symptom profiles consisting of positive and negative symptoms, cognitive impairment, and a plethora of genetic, epigenetic, and phenotypic biomarkers. Assorted animal models of these disorders and clinical neurodevelopmental indicators have implicated neurodegeneration as an element in the underlying pathophysiology. Physical exercise or activity regimes—whether aerobic, resistance, or endurance—ameliorate regional brain and functional deficits not only in affected individuals but also in animal models of the disorder. Cognitive deficits, often linked to regional deficits, were alleviated by exercise, as were quality-of-life, independent of disorder staging and risk level. Apoptotic processes intricate to the etiopathogenesis of schizophrenia were likewise attenuated by physical exercise. There is also evidence of manifest benefits endowed by physical exercise in preserving telomere length and integrity. Not least, exercise improves overall health and quality-of-life. The notion of scaffolding as the outcome of physical exercise implies the “buttressing” of regional network circuits, neurocognitive domains, anti-inflammatory defenses, maintenance of telomeric integrity, and neuro-reparative and regenerative processes.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-16887 |
Date | 04 October 2015 |
Creators | Archer, Trevor, Kostrzewa, Richard M. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0016 seconds