Return to search

Caractérisation physico-chimique du stratum corneum, étude statique et dynamique de l'interface cutanée / Physico-chemical characterization of the stratum corneum, static and dynamic studies of the interfacial skin

La peau est une interface essentielle entre le corps humain et son environnement externe. Au-delà du rôle de couche protectrice contre les agressions externes (mécaniques, thermiques, chimiques…), elle dispose de multiples fonctions de régulation comme l’absorption, la thermorégulation ou la synthèse d’hormones. L’étude de cette interface cutanée est importante, non seulement pour les spécialistes cliniques, mais également pour les chercheurs travaillant dans la compréhension des mécanismes des processus de transfert transcutanés. Longtemps considéré comme une simple couche de cellules mortes, le stratum corneum (SC, couche de la peau la plus externe) était considéré alors comme un acteur secondaire dans ces processus. Des études récentes montrent au contraire que cette couche cutanée, d’une épaisseur pouvant aller de 10 à 40 µm, joue un rôle primordial et déterminant. Ces études révèlent une architecture complexe, qui peut être représentée schématiquement par un empilement de cellules protéiniques (les cornéocytes) situées dans une matrice extracellulaire riche en lipides. Cette couche compacte est loin d’être complètement imperméable aux substances chimiques directement appliquées sur la peau. Nous proposons ici une approche physico-chimique visant à mettre en évidence les mécanismes d’interactions acide-base agissant à l’extrême surface du SC (i.e. une dizaine d’Angströms). En utilisant : i) les réactions de transfert de protons comme “sonde” et ii) une démarche multi-échelles basée sur des titrations de surface par angles de contact et par forces chimiques, nous déterminons quantitativement le rôle de chacune des composantes du SC (i.e. cornéocytes et lipides) dans ce type d’interactions. / Stratum corneum (SC) is a heterogeneous tissue composed of lipid-depleted corneocytes embedded in a lipid-enriched extracellular matrix. It comes from the epidermal differentiation of the skin. The wetting properties of this upper layer are of major interest in the understanding of interfacial phenomena, such as adhesion of microorganisms or proliferation of resident flora. Until now, the wettability behaviour has been characterized through different parameters such as surface energy, critical surface tension, or hydrophilia, via macroscopic contact angle measurements. But this method does not allow to discriminate the effect of the corneocytes with the one of the extracellular matrix on the final surface properties, because of the size of the liquid drop. This work, performed in vitro on human skin explants provided by Pierre Fabre Dermo-Cosmetics, consists in understanding the wetting properties of the SC from macroscopic and nanoscopic points of view. Initially, it is compulsory to thoroughly describe at different scales the physical chemistry of our material, i.e. in vitro SC. Then, knowing that macroscopic contact angles are sensitive to the pH of the liquid probe, the first aim of this work is to determine the “macroscopic pKa values” of the SC, both in vitro and in vivo. Consequently, dynamic contact angles are measured between test-liquid drops (aqueous solutions ranging from pH 1 to pH 13) and the SC in order to obtain the contact angle titration curve of the SC. The same procedure is applied in vivo on SC suffering from skin dryness (xerosis), the results being compared to those obtained previously on safe skin. The second purpose of this study is to reach the pKa values of the different functional groups located on the complex-cornified envelope. This consists in measuring adhesion forces between an AFM (Atomic Force Microscopy) tip (functionalized with specific groups, such as amine, carboxylic acid, hydroxyl, methyl or amide groups) and single-isolated corneocytes through buffered liquid media (ranging from pH 1 to pH 13). As previously, such titration curves are realised on corneocytes coming from safe skin, but also from dry skin. The variations observed in the contact angle titration and chemical force titration curves will be discussed in terms of acid-base, electrostatic interactions and hydrogen bondings. The comprehension of the pH-dependent properties of the SC shall provide a better understanding of the role of individual corneocytes in the final surface properties of the SC.

Identiferoai:union.ndltd.org:theses.fr/2011MULH6458
Date04 July 2011
CreatorsWagner, Matthieu
ContributorsMulhouse, Vallat, Marie-France
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds