Les canaux potassiques voltage-dépendants forment des tétramères dont chaque sous-unité comporte six segments transmembranaires (S1 à S6). Le pore, formé des segments S5-S6 de chaque sous-unité, est entouré de quatre domaines responsables de la sensibilité au potentiel membranaire, les senseurs de voltage (VS; S1-S4). Lors d’une dépolarisation membranaire, le mouvement des résidus chargés situés dans le VS entraine un mouvement de charges détectable en électrophysiologie, le courant de « gating ». L’activation du VS conduit à l'ouverture du pore, qui se traduit par un changement de conformation en C-terminal du segment S6. Pour élucider les principes qui sous-tendent le couplage électromécanique entre ces deux domaines, nous avons étudié deux régions présumées responsables du couplage chez les canaux de type Shaker K+, soit la région carboxy-terminale du segment S6 et le lien peptidique reliant les segments transmembranaire S4-S5 (S4-5L). Avec la technique du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que l’interaction inter-sous-unitaire RELY, formée par des acides aminés situés sur le lien S4-5L et S6 de deux sous-unités voisines, est impliquée dans le développement de la composante lente observée lors du retour des charges de « gating » vers leur état de repos, le « OFF-gating ». Nous avons observé que l’introduction de mutations dans la région RELY module la force de ces interactions moléculaires et élimine l’asymétrie observée dans les courants de « gating » de type sauvage. D’ailleurs, nous démontrons que ce couplage inter-sous-unitaire est responsable de la stabilisation du pore dans l’état ouvert. Nous avons également identifié une interaction intra-sous-unitaire entre les résidus I384 situé sur le lien S4-5L et F484 sur le segment S6 d’une même sous-unité. La déstabilisation de cette interaction hydrophobique découple complètement le mouvement des senseurs de voltage et l'ouverture du pore. Sans cette interaction, l’énergie nécessaire pour activer les VS est moindre en raison de l’absence du poids mécanique appliqué par le pore. De plus, l’abolition du couplage électromécanique élimine également le « mode shift », soit le déplacement de la dépendance au voltage des charges de transfert (QV) vers des potentiels hyperpolarisants. Ceci indique que le poids mécanique du pore imposé au VS entraine le « mode shift », en modulant la conformation intrinsèque du VS par un processus allostérique. / Voltage-gated potassium channels are tetramers and each subunit is formed of six transmembrane segments (S1 to S6). The pore, formed by the S5-S6 segments of each subunit, is surrounded by four modules responsible for sensitivity to the membrane potential, the voltage sensors (VS, S1-S4). During membrane depolarization, the movement of charged residues located in the VS causes a detectable charge movement called the gating current. The activation of the VS led to the opening of the pore, resulting in a conformational change in the C-terminal segment of S6. To elucidate the principles underlying the electromechanical coupling between these two domains, we examined two regions presumed responsible for the coupling among channels of the Shaker K + family: the carboxy-terminal region of S6 and the peptide bond linking the transmembrane segments S4-S5 (S4-5L). Using the cut-open voltage clamp fluorometry (COVCF), we have determined that the RELY inter-subunit interaction, formed by amino acids located on the S4-5L linker and S6 of two neighboring subunits, is involved in the development of the slow component observed during the return of the gating charges (OFF-gating) to their resting state. The introduction of mutations in the RELY region modulates the strength of these molecular interactions and eliminates the asymmetry observed in the wild type gating currents. Moreover, we demonstrate that this inter-subunit coupling is responsible for stabilizing the pore in the open state. We have also identified an intra-subunit interaction between residues I384 located on the S4-5L linker and F484 on the S6 segment of the same subunit. The destabilization of this hydrophobic interaction uncouples completely the movement of voltage sensors from pore opening. Without this interaction, the energy required to activate the VS is diminished due to the absence of mechanical weight applied by the pore. Furthermore, this uncoupling also eliminates the "mode shift", defined as an amplified shift of the voltage dependence of gating charge (QV) to hyperpolarizing potentials during prolonged depolarization, thus indicating that the mechanical load of the pore influences the entry of the VS into this shifted mode by modulating the conformation of the VS threw an intrinsic allosteric process.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/5253 |
Date | 05 1900 |
Creators | Haddad, Georges A. |
Contributors | Blunck, Rikard |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0029 seconds