Return to search

Formulation of Colletotrichum coccodes as a bioherbicide

Colletotrichum coccodes (Wallr.) Hughes, a foliar pathogen of velvetleaf, is being developed as a bioherbicide. Formulation of living organisms for use as pest control products presents unique problems. This research has achieved the development of an adequate formulation of the pathogen by using kaolin clay or talcum powder (1:2.79 wt/wt) as the fillers to dry conidia. Formulated C. coccodes conidia stored at 4, 30C, or at room temperature in bags permeable to oxygen remained viable and able to infect velvetleaf plants at least six months in storage. Various reported germination stimulants increased germination of formulated conidia, although not significantly, whereas increasing concentrations of cutin resulted in subsequent decreases in germination and appressoria formation of fresh as well as formulated conidia. In controlled environment experiments, 14 day-old velvetleaf seedlings were severely diseased when stearic or oleic acids were added to conidia formulated in kaolin clay or talcum powder, respectively. Combinations of germination stimulants, cutinase and/or pectinase inducers did not significantly increase germination and appressoria formation of C. coccodes conidia. Germination of fresh and formulated conidia increased, although not significantly, with the addition of 1% sucrose.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.41025
Date January 1993
CreatorsSaad, Fadia
ContributorsWatson, A. K. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001338403, proquestno: NN87887, Theses scanned by UMI/ProQuest.

Page generated in 0.0082 seconds