Return to search

Design and fabrication of PVDF electrospun piezo- energy harvester with interdigital electrode

This study used electrospinning to fabricate a polyvinylidene fluoride (PVDF) piezoelectric nanofiber harvesting device with interdigitated electrode to capture ambient energy. According to d33 mechanical-electric energy conversion mode, the energy harvesting device can be applied on the low frequency ambient vibration and impact abilities for the transformation mechanical energy into electrical energy effectively. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with multi-walled carbon nanotube (MWCNT) to prepare PVDF macromolecular solution. The mixed solution was filled in a metals needle injector and contacted hundreds of voltage. After the PVDF drop in the needle was subjected to high electric field, the drop overcame surface tension of the solution itself, then extremely fine PVDF fiber was formed and spun out. The electrospun was collected orderly using X-Y digital control stage and the linear diameter of electrospun can be controlled easily by adjusting the travelling speed of the stage. In the spinning process, as affected by stretching strain and electric field at the same time, the PVDF piezoelectric fiber resulted in electric polarization and transformed £] piezoelectric crystal phase, in which the dipoles are oriented in the same direction. Furthermore, MWCNT was added to improve the mechanical properties of fiber and increase £] phase, to enhance the tensile strength and piezoelectric property of PVDF fiber effectively. Finally, the photolithography was used to fabricate interdigitated electrodes with 100£gm gap on the flexible PI substrate. The PVDF fibers, with a length and diameter of approximately 1cm and 700-1000nm, were aligned on interdigitated electrodes and packaged with the PI film. In order to increase the conversion efficiency of piezoelectric fiber in d33 mode, the PVDF fibers were repolarized in a high electric field. The results showed that the PVDF fiber energy harvesting device can generate 15mV open-circuit voltage under low frequency vibration of 4Hz and generate above 30mV open-circuit voltage under 6Hz vibrations. As compared with the piezoelectric fiber not repolarized by interdigitated electrode, its output voltage was increased by1- 2 times.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0901111-141250
Date01 September 2011
CreatorsTsai, Cheng-Hsien
ContributorsYing-Chung Chen, Chi-Hui Chien, Ceng-Teng Pan, Shyh-Chour Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0901111-141250
Rightsuser_define, Copyright information available at source archive

Page generated in 0.002 seconds