Return to search

Métamodèles adaptatifs pour l'optimisation fiable multi-prestations de la masse de véhicules / Adaptive surrogate models for the reliable lightweight design of automotive body structures

Cette thèse s’inscrit dans le cadre des travaux menés par PSA Peugeot Citroën pour l’allègement de ses véhicules. Les optimisations masse multi-prestations réalisées sur le périmètre de la structure contribuent directement à cette démarche en recherchant une allocation d’épaisseurs de tôles à masse minimale qui respectent des spécifications physiques relatives à différentes prestations (choc, vibro-acoustique, etc.). Ces spécifications sont généralement évaluées à travers des modèles numériques à très haute-fidélité qui présentent des temps de restitution particulièrement élevés. Le recours à des fonctions de substitution, connues sous le nom de métamodèles, reste alors la seule alternative pour mener une étude d’optimisation tout en respectant les délais projet. Cependant la prestation qui nous intéresse, à savoir le choc frontal, présente quelques particularités (grande dimensionnalité, fortes non-linéarités, dispersions physique et numérique) qui rendent sa métamodélisation difficile.L’objectif de la thèse est alors de proposer une approche d’optimisation basée sur des métamodèles adaptatifs afin de dégager de nouveaux gains de masse. Cela passe par la prise en compte du choc frontal dont le caractère chaotique est exacerbé par la présence d’incertitudes. Nous proposons ainsi une méthode d’optimisation fiabiliste avec l’introduction de quantiles comme mesure de conservatisme. L’approche est basée sur des modèles de krigeage avec enrichissement adaptatif afin de réduire au mieux le nombre d’appels aux modèles éléments finis. Une application sur un véhicule complet permet de valider la méthode. / One of the most challenging tasks in modern engineering is that of keeping the cost of manufactured goods small. With the advent of computational design, prototyping for instance, a major source of expenses, is reduced to its bare essentials. In fact, through the use of high-fidelity models, engineers can predict the behaviors of the systems they design quite faithfully. To be fully realistic, such models must embed uncertainties that may affect the physical properties or operating conditions of the system. This PhD thesis deals with the constrained optimization of structures under uncertainties in the context of automotive design. The constraints are assessed through expensive finite element models. For practical purposes, such models are conveniently substituted by so-called surrogate models which stand as cheap and easy-to-evaluate proxies. In this PhD thesis, Gaussian process modeling and support vector machines are considered. Upon reviewing state-of-the-art techniques for optimization under uncertainties, we propose a novel formulation for reliability-based design optimization which relies on quantiles. The formal equivalence of this formulation with the traditional ones is proved. This approach is then coupled to surrogate modeling. Kriging is considered thanks to its built-in error estimate which makes it convenient to adaptive sampling strategies. Such an approach allows us to reduce the computational budget by running the true model only in regions that are of interest to optimization. We therefore propose a two-stage enrichment scheme. The first stage is aimed at globally reducing the Kriging epistemic uncertainty in the vicinity of the limit-state surface. The second one is performed within iterations of optimization so as to locally improve the quantile accuracy. The efficiency of this approach is demonstrated through comparison with benchmark results. An industrial application featuring a car under frontal impact is considered. The crash behavior of a car is indeed particularly affected by uncertainties. The proposed approach therefore allows us to find a reliable solution within a reduced number of calls to the true finite element model. For the extreme case where uncertainties trigger various crash scenarios of the car, it is proposed to rely on support vector machines for classification so as to predict the possible scenarios before metamodeling each of them separately.

Identiferoai:union.ndltd.org:theses.fr/2016CLF22670
Date27 January 2016
CreatorsMoustapha, Maliki
ContributorsClermont-Ferrand 2, Sudret, Bruno, Bourinet, Jean-Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds