Moving parts cause vibrations and tend to wear out. In applications where maintenance is complicated, solutions without moving parts are therefore advantageous. Electrohydrodynamic pumps are such a solution. Instead of mechanical propulsion, they use strong electric fields to induce movement in a dielectric cooling liquid. These pumps require very little power, but to generate sufficiently strong electric fields, they need to be fed with very high voltage. This project explored various methods for designing DC/DC-converters which fulfil the demands of an electrohydrodynamic pump. This was done by altering and combining existing topologies that were deemed to be relevant. The main method for testing and evaluation was by simulating in LTspice. The project also briefly investigated methods of overcurrent protection. This was relevant because gas bubbles in the cooling fluid can cause electric arcs which damage the pumps. Three converter topologies were chosen for further evaluation. First, a conventional resonant Royer-based converter that has previously been used by APR Technologies which was altered by the inclusion of a feedback loop. Second, a high-frequency resonant Royer-based converter with a planar air-core transformer. Third, a transformerless converter with a switched boost converter IC. All circuits included a Cockroft-Walton voltage multiplier bridge. The two resonant Royer-based converters fulfilled all requirements except the one on efficiency, while the transformerless converter fulfilled all requirements except the one on cost, set by APR. The more expensive transformerless converter had a significantly higher efficiency and a wider range of acceptable input voltages. Furthermore three general conclusions were drawn. The first was that planar air-core transformers are not beneficial compared to conventional transformers in these type of applications. The second was that a discrete voltage regulator controlled by feedback from the output is more effective than using a voltage regulator without feedback, as it also eliminates temperature and load variations. The third conclusion was that to protect the circuits from overcurrent, a large series resistor is needed, which causes significantly lowered efficiency.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-505259 |
Date | January 2023 |
Creators | Axelsson, Sigge, Gartner, Jonas, Stafström, Axel |
Publisher | Uppsala universitet, Institutionen för elektroteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | ELEKTRO-E ; 23007 |
Page generated in 0.0028 seconds