Master of Science / Entomology / Ming-Shun Chen / Robert "Jeff" J. Whitworth / MicroRNA (miRNA) plays a role in nearly all the biological pathways and therefore may provide opportunities to develop new means to combat the Hessian fly, Mayetiola destructor, a destructive pest of wheat. This study presents a comprehensive analysis of miRNA species via deep-sequencing samples from Hessian fly second instar larvae, pupae and adults. A total of 921 unique miRNA species were identified from approximately 30 million sequence reads. Among the 921 miRNA species, only 22 were conserved among Hessian fly and other insect species, and 242 miRNA species were unique to Hessian fly, the remaining 657 share certain sequence similarities with pre-miRNA genes identified from various insect species. The abundance of the 921 miRNA species based on sequence reads varies greatly among the three analyzed stages, with 20 exclusively expressed in adults, two exclusively expressed in pupae and two exclusively expressed in second instar larvae. For miRNA species expressed in all stages, 722 were with reads lower than 10. The abundance of the remaining 199 miRNA species varied from zero to more than eight-fold differences among different stages. Putative miRNA-encoding genes were analyzed for each miRNA species. A single putative gene was identified for 594 miRNA species. Two putative genes were identified for 138 miRNA species. Three or more putative genes were identified for 86 miRNA species. The three largest families had 14, 23 and 34 putative coding genes, respectively. No gene was identified for the remaining 103 miRNA species. In addition, 1516 putative target genes were identified for 490 miRNA species based on known criteria for miRNA targets. The putative target genes are involved in a wide range of processes from nutrient metabolism to encoding effector proteins. Analysis of the expression patterns of miRNA and pre-miRNA for the miRNA family PC-5p-67443, which contains 91 genes, revealed that miRNA and pre-miRNA were expressed differently in different developmental stages, suggesting that different isogenes are regulated by different mechanisms, or pre-miRNAs had other functions in addition to as an intermediate for miRNA biogenesis. The large set of miRNA species identified here provides a foundation for future research on miRNA functions in Hessian fly and for comparative studies in other species. The differential expression patterns between a pre-miRNA and its encoded mature miRNA in a multigene family is an initial step toward understanding the functional significance of isogenes in dramatically expanded miRNA families.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/20375 |
Date | January 1900 |
Creators | Du, Chen |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds