Return to search

Identification and Characterization of an Arabidopsis thaliana Mutant with Tolerance to N-lauroylethanolamine

N-Acylethanolamines (NAEs) are fatty acid derivatives in plants that negatively influence seedling growth. N-Lauroylethanolamine (NAE 12:0), one type of NAE, inhibits root length, increases radial swelling of root tips and reduces root hair numbers in a dose dependent manner in Arabidopis thaliana L. (ecotype Columbia). A forward genetics approach was employed by screening a population of T-DNA “activation-tagged” developed by the Salk Institute lines for NAE resistance to identify potential genes involved in NAE signaling events in Arabidopsis thaliana L. (ecotype Columbia). Seeds of the activation tagged lines were grown at 0, 25, 30, 50, 75 and 100 µM N-lauroylethanolamime (NAE 12:0). Ten plants which displayed NAE tolerance (NRA) seedling phenotypes, compared with wildtype (Columbia, Col-0) seedlings were identified. I focused on one mutant line, identified as NRA 25, where the tolerance to NAE 12:0 appears to be mediated by a single dominant, nuclear gene. Thermal asymmetric interlaced (TAIL) PCR identified the location of the T-DNA insert as 3.86 kbp upstream of the locus At1g68510. Quantitative PCR indicated that the transcript level corresponding to At1g68510 is upregulated approximately 20 fold in the mutant relative to wildtype. To determine whether the NAE tolerance in NRA 25 is associated with overexpression of At1g68510 I created overexpressing lines of At1g68510 with and without GFP fusions behind the 2X35S CaMV promoter. As predicted, results with overexpressing lines of At1g68510 also exhibited enhanced resistance to NAE when compared with the wildtype. Confocal images of the fusion proteins suggest that GFP-At1g68510 is concentrated in the nucleus and this was confirmed by counterstaining with 4', 6-Diamidino-2-phenylindol (DAPI). Futhermore, At1g68510 overexpressing lines and NRA 25 line also exhibited tolerance to abscisic acid (ABA) during seedling germination. The findings suggests that At1g68510 overexpression mediates seedling tolerance to both ABA and NAE, a mechanism independent of fatty acid amide hydrolase in which its overexpression leads to NAE resistance but hypersensitivity to ABA. The next steps are to identify the association of At1g68510 with specific genomic regions or interacting proteins that may be additional components of NAE signaling in plants.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc822833
Date12 1900
CreatorsAdhikari, Bikash
ContributorsChapman, Kent Dean, Dickstein, Rebecca, Shah, Jyoti, Ayre, Brian G., Blancaflor, Elison B.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatix, 97 pages : illustrations (chiefly color), Text
RightsPublic, Adhikari, Bikash, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0019 seconds