<p>Magnetic reconnection is a universal process occurring at boundaries between magnetized plasmas, where changes in the topology of the magnetic field lead to the transport of charged particles across the boundaries and to the conversion of electromagnetic energy into kinetic and thermal energy of the particles. Reconnection occurs in laboratory plasmas, in solar system plasmas and it is considered to play a key role in many other space environments such as magnetized stars and accretion disks around stars and planets under formation. Magnetic reconnection is a multi-scale plasma process where the small spatial and temporal scales are strongly coupled to the large scales. Reconnection is initiated rapidly in small regions by microphysical processes but it affects very large volumes of space for long times. The best laboratory to experimentally study magnetic reconnection at different scales is the near-Earth space, the so-called Geospace, where Cluster spacecraft <i>in situ</i> measurements are available. The European Space Agency Cluster mission is composed of four-spacecraft flying in a formation and this allows, for the first time, simultaneous four-point measurements at different scales, thanks to the changeable spacecraft separation. In this thesis Cluster observations of magnetic reconnection in Geospace are presented both at large and at small scales. </p><p>At large temporal (a few hours) and spatial (several thousands km) scales, both fluid and kinetic evidence of reconnection is provided. The evidence consist of ions accelerated and transmitted across the Earth’s magnetopause. The observations show that component reconnection occurs at the magnetopause and that reconnection is continuous in time. </p><p>The microphysics of reconnection is investigated at smaller temporal (a few ion gyroperiods) and spatial (a few ion gyroradii) scales. Two regions are important for the microphysics: the X-region, around the X-line, where reconnection is initiated and the separatrix region, away from the X-line, where most of the energy conversion occurs. Observations of a separatrix region at the magnetopause are shown and the microphysics is described in detail. The separatrix region is shown to be highly structured and dynamic even away from the X-line.</p><p>Finally the discovery of magnetic reconnection in turbulent plasma is presented by showing, for the first time, <i>in situ</i> evidence of reconnection in a thin current sheet found in the turbulent plasma downstream of the quasi-parallel Earth’s bow shock. It is shown that turbulent reconnection is fast and that electromagnetic energy is converted into heating and acceleration of particles in turbulent plasma. It is also shown that reconnecting current sheets are abundant in turbulent plasma and that reconnection can be an efficient energy dissipation mechanism.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7891 |
Date | January 2007 |
Creators | Retinò, Alessandro |
Publisher | Uppsala University, Department of Astronomy and Space Physics, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 310 |
Page generated in 0.0024 seconds