• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • Tagged with
  • 33
  • 33
  • 33
  • 33
  • 33
  • 25
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Neutral Particle Detector on the Mars and Venus Express missions

Grigoriev, Alexander January 2007 (has links)
<p>The Neutral Particle Detector (NPD) is a new type of instrumentation for energetic neutral atom (ENA) diagnostics. This thesis deals with development of the NPD sensor designed as a part of the plasma and neutral particle packages ASPERA-3 and ASPERA-4 on board Mars Express and Venus Express, the European Space Agency (ESA) satellites to Mars and Venus, respectively. It describes how the NPD sensors were designed, developed, tested and calibrated. </p><p>It also presents the first scientific results obtained with NPD during its operation at Mars. </p><p>The NPD package consists of two identical detectors, NPD1 and NPD2. Each detector has a 9<sup>o</sup> x 90<sup>o</sup> intrinsic field-of-view divided into three sectors. The ENA detection principle is based on the surface interaction technique. NPD detects ENA differential fluxes within the energy range of 100 eV to 10 keV and is capable of resolving hydrogen and oxygen atoms by time-of-flight (TOF) measurements or pulse height analysis.</p><p>During the calibration process the detailed response of the sensor was defined, including properties such as an angular response function and energy dependent efficiency of each of the sensor sectors for different ENA species. </p><p>Based on the NPD measurements at Mars the main scientific results reported so far are:</p><p>- observation of the Martian H-ENA jet / cone and its dynamics, </p><p>- observations of ENA emissions from the Martian upper atmosphere, </p><p>- measurements of the hydrogen exosphere density profile at Mars, </p><p>- observations of the response of the Martian plasma environment to an interplanetary shock, </p><p>- observations of the H-ENA fluxes in the interplanetary medium.</p>
2

Cluster Observations and Theoretical Explanations of Broadband Waves in the Auroral Region

Backrud, Marie January 2005 (has links)
<p>Broadband extremely low-frequency wave emissions below the ion plasma frequency have been observed by a number of spacecraft and rockets on auroral field lines. The importance of these broadband emissions for transverse ion heating and electron acceleration in the auroral regions is now reasonably well established. However, the exact mechanism(s) for mediating this energy transfer and the wave mode(s) involved are not well known. In this thesis we focus on the identification of broadband waves by different methods. </p><p>Two wave analysis methods, involving different approximations and assumptions, give consistent results concerning the wave mode identification. We find that much of the broadband emissions can be identified as a mixture of ion acoustic, electrostatic ion cyclotron and, ion Bernstein waves, which all can be described as different parts of the same dispersion surface in the linear theory of waves in homogeneous plasma. </p><p>A new result is that ion acoustic waves occur on auroral magnetic field lines. These are found in relatively small regions interpreted as acceleration regions without cold (tens of eV) electrons.</p><p>From interferometry we also determine the phase velocity and k vector for parallel and oblique ion acoustic waves. The retrieved characteristic phase velocity is of the order of the ion acoustic speed and larger than the thermal velocity of the protons. The typical wavelength is around the proton gyro radius and always larger than the Debye length which is consistent with ion acoustic waves. </p><p>We have observed quasi-static parallel electric fields associated with the ion acoustic waves in regions with large-scale currents. Waves, in particular ion acoustic waves, can create an anomalous resistivity due to wave-particle interaction when electrons are retarded or trapped by the electric wave-field. To maintain the large-scale current, a parallel electric field is set up, which then can accelerate a second electron population to high velocities.</p>
3

Radar Probing of the Sun

Khotyaintsev, Mykola January 2006 (has links)
<p>This thesis is dedicated to the theory of solar radar experiments. The Sun exhibits a variety of interesting and complicated physical phenomena, examined mainly through analysis of its radiation. Active solar probing by radar provides an alternative possibility to study the Sun. This concept was tested originally in the 1960's by solar radar experiments at El Campo, Texas, but due to an insufficient level of technology at that time the experimental results were of a poor quality and thus difficult to interpret. Recently, the space weather program has stimulated interest in this topic. New experimental proposals require further development of the theory of solar radar experiments to meet the current knowledge about the Sun and the modern level of technology.</p><p>Three important elements of solar radar experiments are addressed in this thesis: i) generation of wave turbulence and radiation in the solar corona, ii) propagation of the radar signal to the reflection point, and iii) reflection (scattering) of the incident radar signal from the Sun.</p><p>It is believed that the radio emission of solar type II and III bursts occurs due to conversion of Langmuir waves, generated by electron beams, into electromagnetic radiation (plasma emission mechanism). The radar signal propagating through the emission source region can get scattered by the Langmuir turbulence and finally deliver the observer insights of the physics of this turbulence. Such process of scattering is considered in this thesis in the weak turbulence limit by means of the wave-kinetic theory. Scattering frequency shifts, scattering cross-sections, efficiency of scattering (the coefficient of absorption due to scattering), optical depths, and the spectra of the scattered signal are estimated.</p><p>Type II solar radio bursts are known to be associated with the electron beams accelerated by interplanetary shocks. From their dynamic spectra the properties of the shocks and regions in the vicinity of the shock are usually inferred by assuming a plasma emission mechanism. <i>In situ </i>observations of the source region of type II burst, presented in this thesis, suggest that an additional emission mechanism may be present. This mechanism is related to energetic particles crossing the shock front, known in electrodynamics as transition radiation.</p><p>Plasma density fluctuations are known to scatter radio waves and thus broadening their angular dispersion. In the thesis this process is studied in the solar wind and terrestrial electron and ion foreshocks on the basis of <i>in situ</i> observations of density fluctuations. It is shown that the angular broadening of the radar signal is negligible in this regions.</p><p>The results of this thesis can be applied for the preparation of future solar radar experiments and interpretation of experimental data.</p>
4

Turbulence and scalar flux modelling applied to separated flows

Gullman-Strand, Johan January 2004 (has links)
The turbulen flow in an asymmetric diffuser has been en studied by the means of Reynold average Navier-Stokes equations with both differential and explict algebraic expressions to model the Reynolds stress tensor. Modifications to the differential stress model have been derived, using the inverse turbulence timescale to obtain the dissipation of turbuence kinetic energy. The explicit algebraic Reynolds stress model has been used in combination with a two-equation platform to close the system of equations. Modifications made to the transport equation for the inverse turbulence timescale has made it possible to substantially relax the deman on near-wall resolution of this quantity. The rapid growth wth present in the original formulation can be treated as an explicit function of the wall-normal distance. In order to use the new formulation for the transport equation, an equation has as been derived to obtain the shortest distance bettwee a point and the closest wall, regardles of the geometric complexity of the domain. An explicit algebraic expression to model the passive scalar flux vector has been investigated using a comparison with a standard eddy-diffusivity model in the asymmetric diffuser. Results show a substantial improvement of the complexity of the scalar field and scalar flux vector in sepaarated flows. Automated code generation has been used in all the above studies to generate versatile model testing tools for general two-dimensional geometries. Finite element formulations are used for these tools.
5

Cluster Observations and Theoretical Explanations of Broadband Waves in the Auroral Region

Backrud, Marie January 2005 (has links)
Broadband extremely low-frequency wave emissions below the ion plasma frequency have been observed by a number of spacecraft and rockets on auroral field lines. The importance of these broadband emissions for transverse ion heating and electron acceleration in the auroral regions is now reasonably well established. However, the exact mechanism(s) for mediating this energy transfer and the wave mode(s) involved are not well known. In this thesis we focus on the identification of broadband waves by different methods. Two wave analysis methods, involving different approximations and assumptions, give consistent results concerning the wave mode identification. We find that much of the broadband emissions can be identified as a mixture of ion acoustic, electrostatic ion cyclotron and, ion Bernstein waves, which all can be described as different parts of the same dispersion surface in the linear theory of waves in homogeneous plasma. A new result is that ion acoustic waves occur on auroral magnetic field lines. These are found in relatively small regions interpreted as acceleration regions without cold (tens of eV) electrons. From interferometry we also determine the phase velocity and k vector for parallel and oblique ion acoustic waves. The retrieved characteristic phase velocity is of the order of the ion acoustic speed and larger than the thermal velocity of the protons. The typical wavelength is around the proton gyro radius and always larger than the Debye length which is consistent with ion acoustic waves. We have observed quasi-static parallel electric fields associated with the ion acoustic waves in regions with large-scale currents. Waves, in particular ion acoustic waves, can create an anomalous resistivity due to wave-particle interaction when electrons are retarded or trapped by the electric wave-field. To maintain the large-scale current, a parallel electric field is set up, which then can accelerate a second electron population to high velocities.
6

Radar Probing of the Sun

Khotyaintsev, Mykola January 2006 (has links)
This thesis is dedicated to the theory of solar radar experiments. The Sun exhibits a variety of interesting and complicated physical phenomena, examined mainly through analysis of its radiation. Active solar probing by radar provides an alternative possibility to study the Sun. This concept was tested originally in the 1960's by solar radar experiments at El Campo, Texas, but due to an insufficient level of technology at that time the experimental results were of a poor quality and thus difficult to interpret. Recently, the space weather program has stimulated interest in this topic. New experimental proposals require further development of the theory of solar radar experiments to meet the current knowledge about the Sun and the modern level of technology. Three important elements of solar radar experiments are addressed in this thesis: i) generation of wave turbulence and radiation in the solar corona, ii) propagation of the radar signal to the reflection point, and iii) reflection (scattering) of the incident radar signal from the Sun. It is believed that the radio emission of solar type II and III bursts occurs due to conversion of Langmuir waves, generated by electron beams, into electromagnetic radiation (plasma emission mechanism). The radar signal propagating through the emission source region can get scattered by the Langmuir turbulence and finally deliver the observer insights of the physics of this turbulence. Such process of scattering is considered in this thesis in the weak turbulence limit by means of the wave-kinetic theory. Scattering frequency shifts, scattering cross-sections, efficiency of scattering (the coefficient of absorption due to scattering), optical depths, and the spectra of the scattered signal are estimated. Type II solar radio bursts are known to be associated with the electron beams accelerated by interplanetary shocks. From their dynamic spectra the properties of the shocks and regions in the vicinity of the shock are usually inferred by assuming a plasma emission mechanism. In situ observations of the source region of type II burst, presented in this thesis, suggest that an additional emission mechanism may be present. This mechanism is related to energetic particles crossing the shock front, known in electrodynamics as transition radiation. Plasma density fluctuations are known to scatter radio waves and thus broadening their angular dispersion. In the thesis this process is studied in the solar wind and terrestrial electron and ion foreshocks on the basis of in situ observations of density fluctuations. It is shown that the angular broadening of the radar signal is negligible in this regions. The results of this thesis can be applied for the preparation of future solar radar experiments and interpretation of experimental data.
7

The Neutral Particle Detector on the Mars and Venus Express missions

Grigoriev, Alexander January 2007 (has links)
The Neutral Particle Detector (NPD) is a new type of instrumentation for energetic neutral atom (ENA) diagnostics. This thesis deals with development of the NPD sensor designed as a part of the plasma and neutral particle packages ASPERA-3 and ASPERA-4 on board Mars Express and Venus Express, the European Space Agency (ESA) satellites to Mars and Venus, respectively. It describes how the NPD sensors were designed, developed, tested and calibrated. It also presents the first scientific results obtained with NPD during its operation at Mars. The NPD package consists of two identical detectors, NPD1 and NPD2. Each detector has a 9o x 90o intrinsic field-of-view divided into three sectors. The ENA detection principle is based on the surface interaction technique. NPD detects ENA differential fluxes within the energy range of 100 eV to 10 keV and is capable of resolving hydrogen and oxygen atoms by time-of-flight (TOF) measurements or pulse height analysis. During the calibration process the detailed response of the sensor was defined, including properties such as an angular response function and energy dependent efficiency of each of the sensor sectors for different ENA species. Based on the NPD measurements at Mars the main scientific results reported so far are: - observation of the Martian H-ENA jet / cone and its dynamics, - observations of ENA emissions from the Martian upper atmosphere, - measurements of the hydrogen exosphere density profile at Mars, - observations of the response of the Martian plasma environment to an interplanetary shock, - observations of the H-ENA fluxes in the interplanetary medium.
8

Alfvén Waves and Energy Transformation in Space Plasmas

Khotyaintsev, Yuri January 2002 (has links)
This thesis is focused on the role of Alfvén waves in the energy transformation and transport in the magnetosphere. Different aspects of Alfvén wave generation, propagation and dissipation are considered. The study involves analysis of experimental data from the Freja, Polar and Cluster spacecraft, as well as theoretical development. An overview of the linear theory of Alfvén waves is presented, including the effects of fnite parallel electron inertia and fnite ion gyroradius, and nonlinear theory is developed for large amplitude Alfvén solitons and structures. The methodology is presented for experimental identification of dispersive Alfvén waves in a frame moving with respect to the plasma, which facilitates the resolution of the space-time ambiguity in such measurements. Dispersive Alfvén waves are identified on field lines from the topside ionosphere up to the magnetopause and it is suggested they play an important role in magnetospheric physics. One of the processes where Alfvén waves are important is the establishment of the field aligned current system, which transports the energy from the reconnection regions at the magnetopause to the ionosphere, where a part of the energy is dissipated. The main mechanism for the dissipation in the top-side ionosphere is related to wave-particle interactions leading to particle energization/heating. An observed signature of such a process is the presence of parallel energetic electron bursts associated with dispersive Alfvén waves. The accelerated electrons (electron beams) are unstable with respect to the generation of high frequency plasma wave modes. Therefore this thesis also demonstrates an indirect coupling between low frequency Alfvén wave and high frequency oscillations.
9

Substorm Features in the High-Latitude Ionosphere and Magnetosphere : Multi-Instrument Observations

Borälv, Eva January 2003 (has links)
The space around Earth, confined in the terrestrial magnetosphere, is to some extent shielded from the Sun's solar wind plasma and magnetic field. During certain conditions, however, strong interaction can occur between the solar wind and the magnetosphere, resulting in magnetospheric activity of several forms, among which substorms and storms are the most prominent. A general framework for how these processes work have been outlayed through the history of research, however, there still remain questions to be answered. The most striking example regards the onset of substorms, where both the onset cause and location in the magnetosphere/ionosphere are still debated. These are clearly not easily solved problems, since a substorm is a global process, ideally requiring simultaneous measurements in the magnetotail and ionosphere. Investigated in this work are temporal and spatial scales for substorm and convection processes in the Earth's magnetosphere and ionosphere. This is performed by combining observations from a number of both ground-based and spacecraft-borne instruments. The observations indicate that the magnetotail's cross-section is involved to a larger spatial extent than previously considered in the substorm process. Furthermore, convection changes result in topological changes of the magnetosphere on a fast time scale. The results show that the magnetosphere is, on a global magnetospheric scale, highly dynamic during convection changes and ensuing substorms.
10

Turbulence and scalar flux modelling applied to separated flows

Gullman-Strand, Johan January 2004 (has links)
<p>The turbulen flow in an asymmetric diffuser has been en studied by the means of Reynold average Navier-Stokes equations with both differential and explict algebraic expressions to model the Reynolds stress tensor. Modifications to the differential stress model have been derived, using the inverse turbulence timescale to obtain the dissipation of turbuence kinetic energy. The explicit algebraic Reynolds stress model has been used in combination with a two-equation platform to close the system of equations. Modifications made to the transport equation for the inverse turbulence timescale has made it possible to substantially relax the deman on near-wall resolution of this quantity. The rapid growth wth present in the original formulation can be treated as an explicit function of the wall-normal distance. In order to use the new formulation for the transport equation, an equation has as been derived to obtain the shortest distance bettwee a point and the closest wall, regardles of the geometric complexity of the domain. An explicit algebraic expression to model the passive scalar flux vector has been investigated using a comparison with a standard eddy-diffusivity model in the asymmetric diffuser. Results show a substantial improvement of the complexity of the scalar field and scalar flux vector in sepaarated flows. Automated code generation has been used in all the above studies to generate versatile model testing tools for general two-dimensional geometries. Finite element formulations are used for these tools.</p>

Page generated in 0.0761 seconds