Spelling suggestions: "subject:"rymd ocho plasmafysik"" "subject:"rymd och3 plasmafysik""
11 |
Realistic simulations of delta wing aerodynamics using novel CFD methodsGörtz, Stefan January 2005 (has links)
<p>The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows.</p><p>Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible.</p><p>In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored.</p><p>Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment.</p><p>Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data.</p><p>The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times.</p>
|
12 |
Waves in space plasmas : Lower hybrid cavities and simple-pole distribution functionsTjulin, Anders January 2003 (has links)
<p>Waves are a fundamental feature in many parts of physics, since they transport energy without transporting matter. This is the case also in space physics. Waves are responsible for energy transport both between different parts of space and between different particles in the space plasma. They are also useful for diagnostics of the space plasma itself. The present thesis considers two different parts of the large subject of space plasma waves: Lower hybrid cavities (LHCs) and simple-pole particle distribution functions.</p><p>The LHCs are localised density depletions that have been observed by several spacecraft. They have increased wave activity in the lower hybrid frequency range, and was previously found on altitudes up to 1750 km. New observations by the Viking and Cluster satellites show that they are common magnetospheric features, at least up to an altitude of 35,000 km. Theoretical results, assuming a cylindrically symmetric density depletion, show that even though the density depletion may decrease slowly with increasing radial distance, and thus be essentially infinite in extent, there is a maximum distance within which a trapped mode, with given wave number <i>k</i><i>z</i> parallel to the geomagnetic field, may propagate. Furthermore, there is a local relation between the plasma density gradient and the lowest possible frequency that the trapped waves can have, for any monotonic density and given <i>k</i><i>z</i>. The combined theoretical and observational results indicate that the length of the cavities is larger than the width by a factor of at least 200.</p><p>Simple-pole particle distribution functions are introduced because they can model high velocity tails of the particle distribution in a way that is not possible to do with Maxwellian distribution functions. These distributions also simplify the calculations. This gives new possibilities for the physical understanding, as well as the numerical calculations, of the dispersion relations of real space plasmas. The dispersion relations of plasmas described by simple-pole distributions are examined, both for unmagnetised and for magnetised plasmas. These examples show how particle populations with the same density and mean particle energy, but with somewhat different distribution functions, have different wave propagation properties that should be observable by existing spacecraft.</p>
|
13 |
Dissipation at the Earth's Quasi-Parallel Bow ShockBehlke, Rico January 2005 (has links)
<p>The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). </p><p>This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. </p><p>The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. </p><p>Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.</p>
|
14 |
Waves in space plasmas : Lower hybrid cavities and simple-pole distribution functionsTjulin, Anders January 2003 (has links)
Waves are a fundamental feature in many parts of physics, since they transport energy without transporting matter. This is the case also in space physics. Waves are responsible for energy transport both between different parts of space and between different particles in the space plasma. They are also useful for diagnostics of the space plasma itself. The present thesis considers two different parts of the large subject of space plasma waves: Lower hybrid cavities (LHCs) and simple-pole particle distribution functions. The LHCs are localised density depletions that have been observed by several spacecraft. They have increased wave activity in the lower hybrid frequency range, and was previously found on altitudes up to 1750 km. New observations by the Viking and Cluster satellites show that they are common magnetospheric features, at least up to an altitude of 35,000 km. Theoretical results, assuming a cylindrically symmetric density depletion, show that even though the density depletion may decrease slowly with increasing radial distance, and thus be essentially infinite in extent, there is a maximum distance within which a trapped mode, with given wave number kz parallel to the geomagnetic field, may propagate. Furthermore, there is a local relation between the plasma density gradient and the lowest possible frequency that the trapped waves can have, for any monotonic density and given kz. The combined theoretical and observational results indicate that the length of the cavities is larger than the width by a factor of at least 200. Simple-pole particle distribution functions are introduced because they can model high velocity tails of the particle distribution in a way that is not possible to do with Maxwellian distribution functions. These distributions also simplify the calculations. This gives new possibilities for the physical understanding, as well as the numerical calculations, of the dispersion relations of real space plasmas. The dispersion relations of plasmas described by simple-pole distributions are examined, both for unmagnetised and for magnetised plasmas. These examples show how particle populations with the same density and mean particle energy, but with somewhat different distribution functions, have different wave propagation properties that should be observable by existing spacecraft.
|
15 |
Dissipation at the Earth's Quasi-Parallel Bow ShockBehlke, Rico January 2005 (has links)
The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.
|
16 |
Realistic simulations of delta wing aerodynamics using novel CFD methodsGörtz, Stefan January 2005 (has links)
The overall goal of the research presented in this thesis is to extend the physical understanding of the unsteady external aerodynamics associated with highly maneuverable delta-wing aircraft by using and developing novel, more efficient computational fluid dynamics (CFD) tools. More specific, the main purpose is to simulate and better understand the basic fluid phenomena, such as vortex breakdown, that limit the performance of delta-wing aircraft. The problem is approached by going from the most simple aircraft configuration - a pure delta wing - to more complex configurations. As the flow computations of delta wings at high angle of attack have a variety of unusual aspects that make accurate predictions challenging, best practices for the CFD codes used are developed and documented so as to raise their technology readiness level when applied to this class of flows. Initially, emphasis is put on subsonic steady-state CFD simulations of stand-alone delta wings to keep the phenomenon of vortex breakdown as clean as possible. For half-span models it is established that the essential characteristics of vortex breakdown are captured by a structured CFD code. The influence of viscosity on vortex breakdown is studied and numerical results for the aerodynamic coefficients, the surface pressure distribution and breakdown locations are compared to experimental data where possible. In a second step, structured grid generation issues, numerical aspects of the simulation of this nonlinear type of flow and the interaction of a forebody with a delta wing are explored. Then, on an increasing level of complexity, time-accurate numerical studies are performed to resolve the unsteady flow field over half and full-span, stationary delta wings at high angle of attack. Both Euler and Detached Eddy Simulations (DES) are performed to predict the streamwise oscillations of the vortex breakdown location about some mean position, asymmetry in the breakdown location due to the interaction between the left and right vortices, as well as the rotation of the spiral structure downstream of breakdown in a time-accurate manner. The computed flow-field solutions are visualized and analyzed in a virtual-reality environment. Ultimately, steady-state and time-dependent simulations of a full-scale fighter-type aircraft configuration in steady flight are performed using the advanced turbulence models and the detached-eddy simulation capability of an edge-based, unstructured flow solver. The computed results are compared to flight-test data. The thesis also addresses algorithmic efficiency and presents a novel implicit-explicit algorithm, the Recursive Projection Method (RPM), for computations of both steady and unsteady flows. It is demonstrated that RPM can accelerate such computations by up to 2.5 times. / QC 20101019
|
17 |
Energy Transfer and Conversion in the Magnetosphere-Ionosphere SystemRosenqvist, Lisa January 2008 (has links)
<p>Magnetized planets, such as Earth, are strongly influenced by the solar wind. The Sun is very dynamic, releasing varying amounts of energy, resulting in a fluctuating energy and momentum exchange between the solar wind and planetary magnetospheres. The efficiency of this coupling is thought to be controlled by magnetic reconnection occurring at the boundary between solar wind and planetary magnetic fields. One of the main tasks in space physics research is to increase the understanding of this coupling between the Sun and other solar system bodies. Perhaps the most important aspect regards the transfer of energy from the solar wind to the terrestrial magnetosphere as this is the main source for driving plasma processes in the magnetosphere-ionosphere system. This may also have a direct practical influence on our life here on Earth as it is responsible for Space Weather effects. In this thesis I investigate both the global scale of the varying solar-terrestrial coupling and local phenomena in more detail. I use mainly the European Space Agency Cluster mission which provide unprecedented three-dimensional observations via its formation of four identical spacecraft. The Cluster data are complimented with observations from a broad range of instruments both onboard spacecraft and from groundbased magnetometers and radars.</p><p>A period of very strong solar driving in late October 2003 is investigated. We show that some of the strongest substorms in the history of magnetic recordings were triggered by pressure pulses impacting a quasi-stable magnetosphere. We make for the first time direct estimates of the local energy flow into the magnetotail using Cluster measurements. Observational estimates suggest a good energy balance between the magnetosphere-ionosphere system while empirical proxies seem to suffer from over/under estimations during such extreme conditions.</p><p>Another period of extreme interplanetary conditions give rise to accelerated flows along the magnetopause which could account for an enhanced energy coupling between the solar wind and the magnetosphere. We discuss whether such conditions could explain the simultaneous observation of a large auroral spiral across the polar cap.</p><p>Contrary to extreme conditions the energy conversion across the dayside magnetopause has been estimated during an extended period of steady interplanetary conditions. A new method to determine the rate at which reconnection occurs is described that utilizes the magnitude of the local energy conversion from Cluster. The observations show a varying reconnection rate which support the previous interpretation that reconnection is continuous but its rate is modulated.</p><p>Finally, we compare local energy estimates from Cluster with a global magnetohydrodynamic simulation. The results show that the observations are reliably reproduced by the model and may be used to validate and scale global magnetohydrodynamic models.</p>
|
18 |
The Auroral Large Imaging System : design, operation and scientific resultsBrändström, Urban January 2003 (has links)
<p>The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena.</p><p>This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena.</p><p>ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult.</p><p>Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid.</p>
|
19 |
The importance of waves in space plasmas : Examples from the auroral region and the magnetopauseStenberg, Gabriella January 2005 (has links)
<p>This thesis discusses the reasons for space exploration and space science. Space plasma physics is identified as an essential building block to understand the space environment and it is argued that observation and analysis of space plasma waves is an important approach.</p><p>Space plasma waves are the main actors in many important processes. So-called broadband waves are found responsible for much of the ion heating in the auroral region. We investigate the wave properties of broadband waves and show that they can be described as a mixture of electrostatic wave modes. In small regions void of cold electrons the broadband activity is found to be ion acoustic waves and these regions are also identified as acceleration regions. The identification of the wave modes includes reconstructions of the wave distribution function. The reconstruction technique allow us to determine the wave vector spectrum, which cannot be measured directly. The method is applied to other wave events and it is compared in some detail with a similar method.</p><p>Space plasma wave are also sensitive tools for investigations of both the fine-structure and the dynamics of space plasmas. Studies of whistler mode waves observed in the boundary layer on the magnetospheric side of the magnetopause reveal that the plasma is organized in tube-like structures moving with the plasma drift velocity. The perpendicular dimension of these tubes is of the order of the electron inertial length. We present evidence that each tube is linked to a reconnection site and argue that the high density of tube-like structures indicates patchy reconnection.</p>
|
20 |
Drift-Type Waves in Rotating Tokamak PlasmaAsp, Elina January 2003 (has links)
<p>The concept of energy production through the fusion of two light nuclei has been studied since the 1950’s. One of the major problems that fusion scientists have encountered is the confinement of the hot ionised gas, i.e. the plasma, in which the fusion process takes place. The most common way to contain the plasma is by using at magnetic field configuration, in which the plasma takes a doughnut-like shape. Experimental devices of this kind are referred to as tokamaks. For the fusion process to proceed at an adequate rate, the temperature of the plasma must exceed 100,000,000C. Such a high temperature forces the plasma out of thermodynamical equilibrium which plasma tries to regain by exciting a number of turbulent processes. After successfully quenching the lager scale magnetohydrodynamic turbulence that may instantly disrupt the plasma, a smaller scale turbulence revealed itself. As this smaller scale turbulence behaved contrary to the common theory at the time, it was referred to as anomalous. This kind of turbulence does not directly threaten existents of the plasma, but it allows for a leakage of heat and particles which inhibits the fusion reactions. It is thus essential to understand the origin of anomalous turbulence, the transport it generates and most importantly, how to reduce it. Today it is believed that anomalous transport is due to drift-type waves driven by temperature and density inhomogeneities and the theoretical treatment of these waves is the topic of this thesis.</p><p>The first part of the thesis contains a rigorous analytical two-fluid treatment of drift waves driven solely by density inhomogeneities. Effects of the toroidal magnetic field configuration, the Landau resonance, a peaked diamagnetic frequency and a sheared rotation of the plasma have been taken into account. These effects either stabilise or destabilise the drift waves and to determine the net result on the drift waves requires careful analysis. To this end, dispersion relations have been obtained in various limits to determine when to expect the different effects to be dominant. The main result of this part is that with a large enough rotational shear, the drift waves will be quenched.</p><p>In the second part we focus on temperature effects and thus treat reactive drift waves, specifically ion temperature gradient and trapped electron modes. In fusion plasmas the α-particles, created as a by-product of the fusion process, transfer the better part of their energy to the electrons and hence the electron temperature is expected to exceed the ion temperature. In most experiments until today, the ion temperature is greater than the electron temperature and this have been proven to improve the plasma confinement. To predict the performance of future fusion plasmas, where the fusion process is ongoing, a comprehensive study of hot-electron plasmas and external heating effects have been carried out. Especially the stiffness (heat flux vs. inverse temperature length scale) of the plasma has been examined. This work was performed by simulations done with the JETTO code utilising the Weiland model. The outcome of these simulations shows that the plasma response to strong heating is very stiff and that the plasma energy confinement time seems to vary little in the hot-electron mode.</p>
|
Page generated in 0.4867 seconds