Return to search

Approches expérimentales et numériques de l'usinage assisté jet d'eau haute pression : étude des mécanismes d'usure et contribution à la modélisation multi-physiques de la coupe

Cette étude porte sur l'usinage de l'alliage de titane Ti17 avec une assistance jet d'eau haute pression. Une attention particulière a été portée à l'analyse des mécanismes de dégradation et d'usure des outils lors de l'usinage avec et sans assistance. Le suivi de l'usure est réalisé par des observations régulières au microscope électronique à balayage (MEB) et par des analyses chimiques (technique EDS) afin de déterminer les zones de dépôt de matière sur l'outil. Toutes ces observations ont permis d'expliquer les mécanismes d'usure pour une opération d'ébauche et de finition. Il a été montré que les mécanismes d'usure sont différents entre l'usinage conventionnel et l'usinage assisté. En effet, lors de l'assistance jet d'eau haute pression, certains mécanismes ne sont plus activités mais d'autres mécanismes sont accélérés. Il existe donc une pression de jet d'eau optimale pour minimiser l'usure de l'outil.Afin de mettre en évidence l'effet du jet d'eau sur les phénomènes thermomécaniques dans les zones de formation du copeau, une modélisation par éléments finis est réalisée. Un couplage fluide / structure a dû être mis en place afin de prendre en compte les actions mécaniques et thermiques du jet d'eau sur la zone de coupe. Pour cela, la loi de comportement et le modèle d'endommagement de Johnson-Cook, ont été identifiés pour le Ti17 dans des conditions extrêmes sur une large gamme de températures et de vitesses de déformation. Cette modélisation a permis de mettre en évidence, pour l'usinage assisté haute pression, la diminution de la zone de contact outil/copeau, de retrouver la fragmentation du copeau et de quantifier le refroidissement des différentes zones de cisaillement.En revanche, cette modélisation ne permet pas de connaître l'effet de l'hétérogénéité microstructurale du matériau sur la zone de coupe. Ce constat est d'autant plus important que le matériau étudié présente une taille de grain importante (de l'ordre du millimètre). Pour cela, une nouvelle modélisation (multi-échelle) a été développée afin de prendre en compte la microstructure du matériau. Le matériau est donc modélisé comme un polycristal qui prend en compte des lois de la plasticité cristalline. Cette nouvelle approche permet alors de simuler la formation du copeau en prenant en compte les orientations cristallines des grains et les changements de phase qui apparaissent lors de l'usinage.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00973532
Date05 December 2013
CreatorsAyed, Yessine
PublisherEcole nationale supérieure d'arts et métiers - ENSAM
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds