Return to search

Investigation of film forming properties of β-chitosan from jumbo squid pens (Dosidicus gigas) and improvement of water solubility of β-chitosan / Investigation of film forming properties of beta-chitosan from jumbo squid pens (Dosidicus gigas) and improvement of water solubility of beta-chitosan

The objectives of this project were to investigate the critical factors impacting the physicochemical and antibacterial properties of β-chitosan based films derived from jumbo squid (Dosidicus gigas) pens, and to evaluate the feasibility of improving water solubility of β-chitosan through Maillard reaction. The studies examined the effect of molecular weight (1,815 and 366 kDa), acid (formic, acetic, propionic, and lactic acid), and plasticizer (glycerol and sorbitol) on the film properties, as well as reducing sugar (fructose and glucosamine) and heat treatment (high temperature short time (HTST), low temperature long time (LTLT)) on water solubility of chitosan. Results on β-chitosan were compared with α-chitosan in both studies.

Tensile strength (TS) and elongation (EL) of β-chitosan films were influenced by molecular weight (Mw), acid and plasticizer types (P < 0.05). High molecular weight (Hw) β-chitosan films had an overall TS of 44 MPa, 53% higher than that of low
molecular weight (Lw) β-chitosan films (29 MPa) across all acid types used. The mean TS of β-chitosan acetate and propionate films (43 and 39 MPa) were higher (P < 0.05) than that of β-chitosan formate and lactate films (34 and 29 MPa). Films incorporated with plasticizer (32 MPa) had lower TS than those without plasticizer (48 MPa). Mean EL of Hw β-chitosan films was 10% versus approximately 4% in Lw β-chitosan films. Formate and acetate films had higher EL than that of propionate film. Glycerol and sorbitol increased (P < 0.001) EL 151% and 106% compared with the films without plasticizer, respectively. Water vapor permeability (WVP) of the films was affected by acid and plasticizer. Formate films (34 g mm/m² d KPa) had higher WVP than other acid films. Adding plasticizer increased (11% to 31%) WVP of propionate films except the Lw β-chitosan propionate film with sorbitol. The antibacterial activity of Lw β-chitosan and α-chitosan films delayed (P < 0.05) the proliferation of E. coli, where lactate films showed the strongest effect. The growth of L. innocua at 24 h was completely (P < 0.05) inhibited by chitosan films except Hw β-chitosan acetate film.

A soft and cotton-like water soluble chitosan with mesopores was acquired after freeze-drying the Maillard reacted chitosan-sugar solution. The yield of β-chitosan-derivatives (8.48%) was 1.21 times higher than that of α-chitosan products (7.00%) (P < 0.01). Heat treatment only affected the yield of chitosan-glucosamine derivatives. Sugar type did not indicate any impact on the yield of the chitosan-derivative products in general (P > 0.05). The solubility was affected by sugar type (P < 0.01) only occurred in the β-chitosan products prepared with LTLT (P<0.05), where β-chitosan-fructose derivatives (9.56 g/L) had higher solubility than the glucosamine (5.19 g/L).LTLT
treatment had given all chitosan-derivatives a higher solubility (8.44 g/L) than HTST (3.83 g/L) did (P<0.001).

The results from this study demonstrated the feasibility of creating β-chitosan based film from jumbo squid pens with similar mechanical, water barrier and antibacterial properties compare to α-chitosan films as a food wrap and controlled the properties with several important factors, and developing water soluble chitosan through Maillard reaction that possess the potential as functional substance in a wider range of applications. / Graduation date: 2012

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/29852
Date27 April 2012
CreatorsChen, Jeremy L.
ContributorsZhao, Yanyun
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0027 seconds