Return to search

Limit Theorems for Random Simplicial Complexes

We consider random simplicial complexes constructed on a Poisson point process within a convex set in a Euclidean space, especially the Vietoris-Rips complex and the Cech complex both of whose 1-skeleton is the Gilbert graph. We investigate at first the Vietoris-Rips complex by considering the volume-power functionals defined by summing powers of the volume of all k-dimensional faces in the complex. The asymptotic behaviour of these functionals is investigated as the intensity of the underlying Poisson point process tends to infinity and the distance parameter goes to zero. This behaviour is observed in different regimes. Univariate and multivariate central limit theorems are proven, and analogous results for the Cech complex are then given. Finally we provide a Poisson limit theorem for the components of the f-vector in the sparse regime.

Identiferoai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-202010223623
Date22 October 2020
CreatorsAkinwande, Grace Itunuoluwa
ContributorsProf. Dr. Matthias Reitzner, Prof. Dr. Hanna Döring
Source SetsUniversität Osnabrück
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, application/zip
RightsAttribution 3.0 Germany, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0018 seconds