Return to search

Longwave Infrared Snapshot Imaging Spectropolarimeter

The goal of this dissertation research is to develop and demonstrate a functioning snapshot imaging spectropolarimeter for the long wavelength infrared region of the electromagnetic spectrum (wavelengths from 8-12 microns). Such an optical system will be able to simultaneously measure both the spectral and polarimetric signatures of all the spatial locations/targets in a scene with just a single integration period of a camera. This will be accomplished by combining the use of computed tomographic imaging spectrometry (CTIS) and channeled spectropolarimetry. The proposed system will be the first instrument of this type specifically designed to operate in the long wavelength infrared region, as well as being the first demonstration of such a system using an uncooled infrared focal plane array. In addition to the design and construction of the proof-of-concept snapshot imaging spectropolarimeter LWIR system, the dissertation research will also focus on a variety of methods on improving CTIS system performance. These enhancements will include some newly proposed methods of system design, calibration, and reconstruction aimed at improving the speed of reconstructions allowing for the first demonstration of a CTIS system capable of computing reconstructions in 'real time.'

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/301708
Date January 2013
CreatorsAumiller, Riley
ContributorsDereniak, Eustace L., Dallas, William J., Sampson, Robert E., Dereniak, Eustace L.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds