Return to search

Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln / Development and characterization of gelatin-based hydrogels and PLGA-based Janus particles

Zusammenfassung
In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung für
die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der
Oberflächeneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist
eine grundlegende Voraussetzung für deren erfolgreichen Einsatz. Die Protein-Oberflächen-
Interaktion geschieht initial, sobald ein Implantat mit Körperflüssigkeiten oder mit Gewebe
in Kontakt kommt, und trägt maßgeblich zur direkten Wechselwirkung von Implantat und
umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht.
Daher bestand ein Ziel darin, stabile, nanometerdünne Gelatineoberflächen herzustellen
und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu
analysieren.
Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten
Oberflächen wurde unter Verwendung eines Rotationsbeschichters durchgeführt.
Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen
untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles
Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen
Gelatinefilm, welcher durch die substratunabhängige Amin-Modifizierung kovalent auf
unterschiedlichste Oberflächen aufgebracht werden konnte. Die durch den Herstellungsprozess
präzise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie
und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabhängig
von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte
Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit
Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick
auf ihre Stabilität chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner
Plasmaproteine (Einzelproteinlösungen) und komplexer Proteingemische aus steril filtrierten
Kulturüberständen des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die
Quarzkristall-Mikrowaage mit Dissipationsüberwachung eingesetzt. Hiermit konnte nicht
nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberflächen
(Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten
Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere
Proteinmasse im Vergleich zu den Referenzoberflächen. Circa ein Viertel der adsorbierten
Proteine migrierte in die Poren des gequollenen Gels und veränderte dessen viskoelastische
Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen
Proteine auf den untersuchten Oberflächen identifiziert und untereinander verglichen
werden. Hierbei zeigten sich nur geringfügige Unterschiede in der Proteinzusammensetzung.
Zudem wurde eine Sekundärionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen
und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgeführt.
Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten
Proben eindeutig differenziert werden. Dieser Ansatz ermöglicht es, die Adsorption von
unterschiedlichen Proteinen auf proteinbasierten Oberflächen markierungsfrei zu untersuchen
und kann zur Aufklärung der in vivo-Situation beitragen. Darüber hinaus bietet dieser
Untersuchungsansatz neue Perspektiven für die Gestaltung und das schnelle und effiziente
Screening von unterschiedlichen Proteinzusammensetzungen.
Biomaterialien können jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt
werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch
abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die
Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit
Vorerkrankungen wie Cystische Fibrose oder primäre Ziliendyskinesie eine große Herausforderung
dar. Oral oder intravenös applizierte Wirkstoffe erreichen die Erreger aufgrund der
erhöhten Zähigkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher
besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting
mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten
(Janus-Partikel) herzustellen und deren Eignung für die therapeutische Anwendung bei
Lungeninfektionen zu untersuchen.
Durch das in dieser Arbeit entwickelte Lösungsmittelsystem können Janus-Partikel aus
biologisch abbaubaren Co-Polymeren der Polymilchsäure (Poly(lactid-co-glycolid), PLGA)
hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein
Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum
(Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten
Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen
mittels Dialyse und anschließender Hochleistungsflüssigkeitschromatographie gemessen werden.
Die Freisetzungsrate wird von der Kettenlänge des Polymers beeinflusst, wobei eine
kürzere Kettenlänge zu einer schnelleren Freisetzung führt. Das in die Partikel eingelagerte
Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das
Einlagern von ICZ in die Partikel ist es möglich diesen schlecht wasserlöslichen Wirkstoff in
eine für Patienten zugängliche und wirksame Applikationsform zu bringen. In Interaktion mit
P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse
als der Wirkstoff in Lösung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte
Galleria mellonella bestätigte. AZT-beladene Partikel hatten gegenüber einer identischen
Wirkstoffmenge in Lösung eine 27,5% bessere Überlebensrate der Wachsmotten zur Folge.
Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten.
Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings,
bildeten die Basis für Untersuchungen der Partikel in Interaktion mit humanen
Atemwegszellen. Die Untersuchung von Apoptose- und Entzündungsmarkern im Überstand
der 3D-Modelle zeigte diesbezüglich keinen negativen Einfluss der Partikel auf die humanen
Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es
möglich, Medikamentenuntersuchungen an menschlichen Zellen durchzuführen. Hinsichtlich
der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine
hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane
Mucine auf den 3D-Modellen dienten zur Untersuchung der schleimlösenden Wirkung von
ACC-beladenen Partikeln. Standen diese in räumlichem Kontakt zu den Mucinen, wurde deren
Zähigkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen
Methoden bestätigt werden konnte.
Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und können
für die Synthese ähnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen,
modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe
und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten
Resultate bekräftigen. / In the field of regenerative medicine, polymer-based biomaterials are of great importance for the
development and application of improved or new therapies. The research on the surface properties of
biomaterials, which are used as implants, is essential for their successful use. The
protein-surface interaction is the initial step and occurs when an implant comes into contact with
bodily fluids or tissues and significantly increases direct interaction of the implant and the
surrounding cells. This thesis investigates these processes on gelatin. Accordingly, one of the
project’s major goals was to produce stable nanometer-thin gelatin surfaces and analyze the
adsorption of human plasma and bacterial proteins.
The deposition of gelatin films and the assortment of layer thicknesses on PPX-amine modified
surfaces were carried out using a spin coater. To gain hydrogel films with reproducible
properties, the amine groups of the disaggregated gelatin fibrils were cross- linked with each
other and with those of the amine modification by a biocompatible diisocyanate. The result was a
reproducible and chemically stable gelatin film, which could be applied to a wide variety of
surfaces through the substrate-independent amine modification. The manufacturing process precisely
adjusted the layer thickness to the nano- or micrometer scale which could be determined applying
ellipsometry and atomic- force microscopy. The roughness was very low regardless of the layer
thickness. Gelatin films applied to the functionalized and patterned samples could be visualized by
electron microscopy. With the help of infrared reflection absorption spectroscopy, the gelatin
films were chemically characterized in terms of stability. The adsorption of human plasma proteins
(single protein solutions) as well as the complex protein mixtures of sterile filtered supernatants
belonging to Pseudomonas aeruginosa, a human pathogenic bacterium, were quantified by quartz
crystal microbalance with dissipation monitoring. Both the adsorbed amount of proteins on the
gelatin hydrogel or reference surfaces (gold, PPX-amine, titanium) and the viscoelastic properties
of the adsorbed protein film were determined. In general, there was less protein mass adsorbed on
the gelatin hydrogel compared to the reference surfaces. About a quarter of the adsorbed proteins
migrated into the pores of the swollen gel and changed its viscoelastic properties. Subsequent
MALDI-ToF/MS and MS/MS analysis were used to identify and compare the adsorbed bacterial proteins
on the investigated surfaces. Only slight differences were found in the adsorbed protein
composition. A secondary ion mass spectrometry with time-of-flight analysis was performed on pure
gelatin films and gelatin films loaded with human plasma proteins. By subsequent multivariate data
analysis, it was possible to clearly differentiate between the examined samples. Not only does this
approach enable us to screen the adsorption of different proteins on protein-based surfaces without
labeling, but it also contributes to the elucidation of the in vivo-situation. ach provides new
perspectives regarding the design and efficient
screening of different protein compositions. ...

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:14263
Date January 2016
CreatorsSchönwälder, Sina Maria Siglinde
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0171 seconds