Return to search

Thin films of polyfluorene:fullerene blends - Morphology and its role in solar cell performance

The sun provides us daily with large quantities of energy in the form of light. With the world’s increasing demand of electrical energy the prospect of converting this solar light into electricity is highly tempting. In the strive towards mass-production and low cost solar cells, new types of solar cells are being developed, e.g. solar cells completely based on organic molecules and polymers. These materials offer a promising potential of low cost and large scale manufacturing and have the additional advantage that they can be produced on flexible and light weight substrate which opens for new and innovating application areas, e.g. integration with paper or textiles, or as building materials. In polymer solar cells a combination of two materials are used, an electron donor and an electron acceptor. The three dimensional distribution of the donor and acceptor in the active layer of the device, i.e. the morphology, is known to have larger influence of the solar cell performance. For the optimal morphology there is a trade-off between sometimes conflicting criteria for the various steps of the energy conversion process. The dissociation of photogenerated excitons takes place at an interface between the donor and acceptor materials. Therefore an efficient generation of charges requires a large interface between the two components. However, for charge transport and collection at the electrodes, continuous pathways for the charges to the electrodes are required. In this thesis, results from morphology studies by atomic force microscopy (AFM) and dynamic secondary ion mass spectrometry (SIMS) of spin-coated blend and bilayer thin films of polyfluorene co-polymers, especially poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4´,7´-di-2-thienyl-2´,1´,3´-benzothiadiazole)] APFO-3, and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are presented. It is shown that by varying the blend ratio, the spin.-coating solvent, and/or the substrate, different morphologies can be obtained, e.g. diffuse bilayer structures, spontaneously formed multilayer structures and homogeneous blends. The connection between these different morphologies and the performance of solar cells is also analysed. The results indicate that nano-scale engineering of the morphology in the active layer may be an important factor in the optimization of the performance of polymer solar cells.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-1243
Date January 2007
CreatorsBjörström Svanström, Cecilia
PublisherKarlstads universitet, Fakulteten för teknik- och naturvetenskap, Fakulteten för teknik- och naturvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationKarlstad University Studies, 1403-8099 ; 2007:43

Page generated in 0.0029 seconds