Executive summary Today, packaging has gained a significant role in the food industry as well as other industries. Paper substrates that have been coated in some ways are typically used to make packaging. The amount and type of pigment used in the formulation determine whether this coating is a pigment coating or a barrier coating. Critical pigment volume concentration (CPVC) is the optimum spot when the pigments are packed as densely as possible, and the binder fills the air gaps. When the amount of pigment in a coating is less than CPVC, a barrier coating is formed, although when the amount of pigment in the coating is greater than CPVC, a pigment coating is formed. Pigment coating adds optical properties to a package, such as improved printability. And chemical protection is primarily provided for water, water vapour, fats, and gases in the case of the barrier coating. Chemical protection against these substances means, for food packaging, that the shelf life of the product will be extended, among other things. The role of packaging in society is expected to grow as barrier coatings on packaging continue to improve. The use of nanoclay in barrier coatings is investigated in this laboratory study. Two latexes are tested with nanoclay, with latex chosen based on its glass transition temperature (Tg). The hypothesis was that a latex with a higher Tg would have more properties like brittleness and orderly structure in its amorphous structure than the other latex. Latex with a lower Tg, on the other hand, would have more elasticity, be more ductile, and have a lower degree of ordered structure in its amorphous structure. Latex with a higher Tg was referred to as Hard latex and was composed of Styrene-butadiene, while latex with a lower Tg was referred to as Soft latex and was composed of Polyolefin dispersion, although it is unorthodox to call it latex. Previous research has found that the addition of Bentonite nanoclay can improve the mechanical and barrier properties of barrier coatings. Bentonite was therefore chosen as the nanoclay for this study due to having a higher aspect ratio, is flaky and can improve desired properties. The coating was applied as a dispersion coating using a lab-scale rod coater. The substrate for this study was BillerudKorsnäs FibreForm with a grammage of 150 g/m2.In order to find the optimum rod for the coating, three different rods were tested during screening test 1. The rods tested were based on the desired coating weight and thickness, a red rod with a wet film thickness of 12 μm was chosen. The nanoclay content of the latex formulation was investigated to determine the optimal level for improved barrier properties. In screening test 2, the concentrations examined were 2/4/8 w/w% nanoclay in each latex, and 0 w/w% to compare the difference with Hard/Soft latex to see if there are any benefits of nanoclay. For both latexes, the addition of 2/4 w/w% nanoclay resulted in more pinholes as well as a poor water vapour transmission rate and permeability. The results of screening test 2 showed that adding 8 w/w% nanoclay to both latexes improved the water vapour transmission rate, water vapour permeability, and pinholes test when compared to the other concentrations of nanoclay. In the water vapour transmission rate and pinholes test, however, 0 percent nanoclay performed similarly 8 w/w% for each latex formulation. The selected formulation for further study was 8 w/w% nanoclay with Hard/Soft latex. Water vapour was the most important barrier property to investigate since barrier coatings were intended for food packaging. For the intended food packaging, it was sought that the barrier could be stretched with 3.8/6.7/10.4%-stretch and then characterized by water vapour transmission rate to be able to see the differences before and after stretching. Stretching with tensile tester were performed on a barrier coated FibreForm, first in the machine direction (MD), then in cross-direction (CD). Hydroforming with shaped bubbles was used for the second method of stretching with various bubbles. Stretching in MD + CD, and hydroforming bubbles were done according to the desired %-stretching. Characterization of the coating was done by water vapour transmission rate (WVTR) for all coatings, pinholes test for hydroformed coatings, water vapour permeability (WVP) and scanning electron microscopy (SEM) on tensile-stretched coatings. The performance of Soft latex with an 8 w/w% formulation stretched in MD then CD and characterized by water vapour transmission rate was significantly unchanged despite stretching up to 10.4%. This is thought to be because nanoclay, as the literature suggests, has created a better barrier against water vapour. The mean WVTR of 10.4%-stretching in MD then CD was 5.5 g/m2/day, compared to 5.5 g/m2/day for the unstretched barrier. SEM images of both stretched and non-stretched coatings show that the dispersion of nanoclay is poor, as there are islands of polymer and nanoclay bulk. The poor dispersion of nanoclay in the matrix was due to the lack of polar groups in the backbone of Soft latex (Polyolefin) and also being hydrophobic, as opposed to Bentonite, which is hydrophilic. Despite poor nanoclay dispersion and a stretch of 10.4% in MD + CD, resulting in reduced barrier thickness, WVP improved from 289 g* /m2/day (pre-stress) to 191 g* /m2/day (10.4%-stretch), giving the impression of some reorientation of nanoclay in the polymer matrix. A crack was also visible in SEM images, near the boundary layer between the barrier and the substrate, on an unstretched coating, which is thought to be caused by the difference in the boundary layer and adhesive forces, that has occurred during drying. Cracks are not visible on the stretched barriers, even though it was expected. With increased stretching of hydroforming substrates coated with Soft latex formulation, the performance of water vapour transmission rate was significantly worse. The reason for this is thought to be that the barrier was damaged during hydroforming due to friction during pressing and shaping, as the hydroforming was done on the barrier side. The pinhole test revealed clearly degraded performance with a large number of pinholes. This could indicate that the barrier has been stretched beyond its capacity or has been damaged. There was no correlation found between stretching in tensile tester and hydroforming. Hard latex with an 8 w/w% formulation stretched in MD then CD and characterized by water vapour transmission rate could be stated to have significantly improved performance despite stretching up to 10.4%. The mean-WVTR of 10.4%-stretching in MD then CD was 11.3 g/m2/day, compared to 16.4 g/m2/day for the unstretched barrier. According to SEM images, the reason for this is that nanoclay was very well dispersed in the matrix and that there has seemingly been a slight reorientation of nanoclay with increased stretch. Furthermore, SEM images show that the thickness was reduced, yet despite this, mean-WVP improved from 1094 g* /m2/day (pre-stress) to 419 g* /m2/day (10.4%-stretch), indicating reorientation of nanoclay and thus improved stretchability.These SEM images show cracks at the boundary layer between the barrier and the substrate for both unstretched and 10.4%-stretched barriers in the Hard latex formulation. The cracks are seemingly stopped by nanoclay in the matrix, according to the stress concentration effect, where the crack moves around nanoclay and not through nanoclay. Hydroforming of barrier coated Hard latex formulation showed a deterioration of water vapour transmission rate with increased stretching. The mean WVTR of hydroforming with 10.4%-stretching was 30.6 g/m2/day. It is not thought that pressing during hydroforming damaged the Hard latex barrier as much, which can be confirmed by the pinholes test. Pinholes test demonstrated good performance and comparable to an unstretched barrier. Because comparisons between the different polymers were impractical, it was not possible to state if the glass transition temperature was important for the improvement seen by stretching in the tensile tester. But it can be argued that Hard latex has a more structured and rigid structure, allowing for a greater degree of reorientation. Soft latex, on the other hand, has less stiffness and thus less reorientation. The result of this study is that when stretching is done in both tensile testing and hydroforming, 8 w/w% nanoclay (bentonite) with Hard latex (styrene-butadiene) can be used advantageously in FibreForm packaging if stretchability is desired while maintaining barrier properties against water vapor. / Sammanfattning Idag har förpackningar fått en betydande roll i matindustrin såväl som andra industrier. Vid bestrykning på förpackningar och papperssubstrat så är det vanligt med pigment- eller barriärbestrykning. Vid pigmentbestrykning så tillförs optiska egenskaper till förpackningen, såsom exempelvis förbättrad tryckbarhet. Vid barriärbestrykning tillförs huvudsakligen kemisk skydd mot exempelvis vatten, vattenånga, fetter eller gaser, och innebär för matförpackningar bland annat att hållbarheten blir längre för livsmedlet. Genom fortsatt utveckling av barriärbestrykningar på förpackningar så förväntas även förpackningens roll i samhället att bli större. I denna laborativa studie undersöks möjligheterna kring töjbara barriärer på papperssubstrat, med fokus på vattenångaresistans. De formuleringar som togs fram bestod av en latex med låg glasövergångstemperatur (Tg), kallad Soft latex med implementerad nanolera samt en latex med en Tg kallad Hard latex med implementerad nanolera. Soft latex var en Polyolefin dispersion med Tg -30°C, och Hard latex var en Styren-butadien latex med Tg = 0°C. 8 w/w% nanolera var den halt som bedömdes ge förbättringar i de mekaniska samt barriäregenskaper som eftersöktes för de båda latex. För denna studie valdes Bentonit som nanolera, på grund av dess plana samt dess fjälliga (flaky) struktur. Töjbarheten hos de framtagna barriärformuleringarna testades med töjning i dragprov först i maskin-riktning (MD) och sedan tvär-riktning (CD) samt töjning med hydroforming, med töjning på 3,8/6,7/10,4% för respektive metod. Efter töjning av respektive metod bestämdes överföringshastigheten av vattenångpermabilitet (WVTR) genom barriären. En jämförelse gjordes mellan töjning i dragprov och hydroforming för att få en ökad förståelse kring WVTR-prestationen beroende på metod av töjning. Soft latex visade en oförändrad vattenångaresistans efter 10,4%-töjning i dragprovaren. Detta tros bero på att nanoleran försvårar vattenångan att genomträngas trots töjning. Vid elektronmikroskop (SEM) kunde det ses att dispersionen av nanolera med Soft latex inte var bra, och därför var inte förbättringarna lika tydliga. Den sämre dispersionen av nanolera i matrisen beror på att Polyolefin saknar polära grupper i dess ryggrad (backbone) samt är väldigt hydrofobt, till skillnad från Bentonit som är hydrofilt. Trots sämre dispersion av nanolera och en töjning på 10,4% i MD + CD, så förbättrades vattenånga permeabiliteten (WVP).För hydroforming var prestationen av Soft latexformuleringen gällande WVTR dåliga, och vid Pinholes test fanns det uppenbara pinholes. Hard latex visade en tydlig förbättring av WVTR efter 10,4%-töjning i dragprovaren, som tros bero på en omorientering av nanoleran i polymer matrisen vid töjning, vilket kan bekräftas av elektronmikroskop (SEM) där viss omorientering är synlig. Dessutom sågs en tydlig förbättring i WVP trots en lägre barriärtjocklek.För hydroforming var WVTR-värdena liknande till endast Hard latex och 0% nanolera. Vid töjning var jämförelser beroende på de olika glasövergångstemperaturerna hos polymererna inte möjlig, och därför inte heller möjligt att konstatera ifall glasövergångstemperaturen var viktig för den förbättring som setts trots töjning i dragprovare. Men det kan hävdas att Hard latex har en mer strukturerad och stel struktur, vilket möjliggör en större grad av omorientering. Soft latex däremot, är mindre styvt och mindre ordnat, därav åstadkoms en mindre omorientering. Resultaten av denna studie är att när stretching görs i både dragprovning och hydroformning, kan 8 w/w% nanoclay (bentonit) med Hard latex (styren-butadien) vara fördelaktig i FibreForm-förpackning om töjbarhet önskas samtidigt som barriäregenskaperna mot vattenånga bibehålls.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-84939 |
Date | January 2021 |
Creators | Muradparist, Kajin |
Publisher | Karlstads universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.004 seconds