Dans les quatre premiers chapitres de cette thèse, nous abordons quelques équations diophantiennes et leurs solutions. On démontre que l'équation y 2 = px(Ax2 + 2) n'admet qu'un maximum de six solutions entières où p est nombre premier et A > 1 est entier impair ; on démontre que l'équation Resx P(x), x2 + sx + t = a n'admet qu'un nombre ni de solutions (s, t) pour P un polynôme xe et a un entier autre que zéro ; on résout l'équation Fn−Fm = y a lorsque y ∈ {6, 11, 12} et on trouve une borne pour les solutions de Fn + Fm = y a dans le cas général ; et on démontre que si un nombre su sant d'entiers x consécutifs existent tels que P(x) est sous la forme mq lorsque q ≥ 2 est diviseur de deg P, alors P = Rq pour un certain polynôme R, ce qui nous permet de déduire l'existence d'une in nité de solutions à y q = P(x) à partir d'un nombre ni de telles solutions dans certains cas. Dans les six derniers chapitres, nous abordons plusieurs sujets reliés à la décomposition d'objets algébriques. Parmi les résultats, on présente quelques conditions sous lesquelles un polynôme ne peut pas être exprimé comme une composition de deux polynômes de degré inférieur ; on présente une nouvelle démonstration du théorème Carltiz-Lutz sur les polynômes de permutations ; on étudie la possibilité d'exprimer un polynôme comme une somme composée ou un produit composé de deux autres polynômes de degré inférieur ; on trouve une borne pour un des plus petits nombres premiers qui se décompose dans un corps imaginaire quadratique donné ; et on étudie la possibilité de recouvrir un anneau avec ses sous-anneaux / The rst four chapters of this thesis address some Diophantine equations and their solutions. We prove that the equation y 2 = px(Ax2 + 2) has at most six integer solutions (x, y) for p a prime and A > 1 an odd integer; we prove that the equation Resx P(x), x2 + sx + t = a has only nitely many integer solutions (s, t) for a xed polynomial P and nonzero integer a; we completely solve the equation Fn − Fm = y a for y ∈ {6, 11, 12} and bound the solutions for Fn + Fm = y a in general; and we prove that the existence of su ciently many consecutive integers x such that P(x) is of the form mq for q ≥ 2 dividing deg P implies that Rq for some polynomial R, providing criteria for deducing the existence of in nitely many solutions to y q = P(x) from the existence of nitely many solutions in some cases. In the last six chapters, we address various algebraic decomposition related topics. Among other results, we provide criteria which guarantee a polynomial cannot be written as a composition of two polynomials of smaller degree; we provide a new proof of the Carlitz-Lutz theorem on permutation polynomials; we study the possibility of expressing a polynomial as the composed sum or composed multiplication of two polynomials of smaller degree; we bound from below some of the smallest primes which split in an imaginary quadratic eld; and we study the possibility of covering a ring with its subrings
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66715 |
Date | 02 February 2024 |
Creators | Larone, Jesse |
Contributors | Kihel, Omar, Lévesque, Claude, Lei, Antonio |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (ix, 97 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0016 seconds