Spelling suggestions: "subject:"polynômes"" "subject:"polynôme""
1 |
Les inégalités de BernsteinLesage, Frédéric January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Résolution de certaines équations diophantiennes et propriétés de certains polynômesLarone, Jesse 02 February 2024 (has links)
Dans les quatre premiers chapitres de cette thèse, nous abordons quelques équations diophantiennes et leurs solutions. On démontre que l'équation y 2 = px(Ax2 + 2) n'admet qu'un maximum de six solutions entières où p est nombre premier et A > 1 est entier impair ; on démontre que l'équation Resx P(x), x2 + sx + t = a n'admet qu'un nombre ni de solutions (s, t) pour P un polynôme xe et a un entier autre que zéro ; on résout l'équation Fn−Fm = y a lorsque y ∈ {6, 11, 12} et on trouve une borne pour les solutions de Fn + Fm = y a dans le cas général ; et on démontre que si un nombre su sant d'entiers x consécutifs existent tels que P(x) est sous la forme mq lorsque q ≥ 2 est diviseur de deg P, alors P = Rq pour un certain polynôme R, ce qui nous permet de déduire l'existence d'une in nité de solutions à y q = P(x) à partir d'un nombre ni de telles solutions dans certains cas. Dans les six derniers chapitres, nous abordons plusieurs sujets reliés à la décomposition d'objets algébriques. Parmi les résultats, on présente quelques conditions sous lesquelles un polynôme ne peut pas être exprimé comme une composition de deux polynômes de degré inférieur ; on présente une nouvelle démonstration du théorème Carltiz-Lutz sur les polynômes de permutations ; on étudie la possibilité d'exprimer un polynôme comme une somme composée ou un produit composé de deux autres polynômes de degré inférieur ; on trouve une borne pour un des plus petits nombres premiers qui se décompose dans un corps imaginaire quadratique donné ; et on étudie la possibilité de recouvrir un anneau avec ses sous-anneaux / The rst four chapters of this thesis address some Diophantine equations and their solutions. We prove that the equation y 2 = px(Ax2 + 2) has at most six integer solutions (x, y) for p a prime and A > 1 an odd integer; we prove that the equation Resx P(x), x2 + sx + t = a has only nitely many integer solutions (s, t) for a xed polynomial P and nonzero integer a; we completely solve the equation Fn − Fm = y a for y ∈ {6, 11, 12} and bound the solutions for Fn + Fm = y a in general; and we prove that the existence of su ciently many consecutive integers x such that P(x) is of the form mq for q ≥ 2 dividing deg P implies that Rq for some polynomial R, providing criteria for deducing the existence of in nitely many solutions to y q = P(x) from the existence of nitely many solutions in some cases. In the last six chapters, we address various algebraic decomposition related topics. Among other results, we provide criteria which guarantee a polynomial cannot be written as a composition of two polynomials of smaller degree; we provide a new proof of the Carlitz-Lutz theorem on permutation polynomials; we study the possibility of expressing a polynomial as the composed sum or composed multiplication of two polynomials of smaller degree; we bound from below some of the smallest primes which split in an imaginary quadratic eld; and we study the possibility of covering a ring with its subrings
|
3 |
Algorithmes pour les polynômes lacunairesLeroux, Louis 24 March 2011 (has links) (PDF)
Le but de cette thèse est d'utiliser plusieurs résultats profonds de géométrie diophantienne et de géométrie algébrique pour obtenir des applications à la factorisation des polynômes lacunaires. Dans la première partie, on décrit un algorithme qui détermine une représentation des points de torsion d'une sous-variété de Gn m définie par des polynômes lacunaires. La complexité de cet algorithme est quasilinéaire en le logarithme du degré des polynômes définissant cette sous-variété. Dans la seconde partie, on s'intéresse à des systèmes surdéterminés d'équations polynomiales. On décrit un algorithme qui permet d'écrire les zéros communs de trois polynômes à deux variables comme une réunion finie d'intersections complètes en dehors d'un ouvert de A2. La complexité de cet algorithme est encore quasi-linéaire en le logarithme du degré des polynômes en entrée mais cet algorithme dépend de la validité de la conjecture de Zilber qui est encore à ce jour un problème ouvert.
|
4 |
Localisation spectrale à l'aide des polynômes de Faber et équation de cobord / Spectrum localisation with Faber polynomials and coboundary equationDevys, Oscar 21 June 2012 (has links)
Il s'agit d'une thèse en analyse fonctionelle et théorie des opérateurs. On considère un opérateur linéaire et borné agissant sur un espace de Banach. Dans la première partie de la thèse on propose des conditions suffisantes pour que le spectre de cet opérateur soit inclus dans un domaine de Jordan. Pour cela on utilise un outil d'analyse complexe, les polynômes de Faber. La seconde partie est consacrée à l'existence de solutions à l'équation de cobord liée à l'opérateur considéré, ce problème est lié à la théorie ergodique. / This is a thesis in functional analysis and operator theory. We consider a bounded linear operator in a Banach space. In the first part, we give some conditions to ensure that the spectrum of this operator is included in a domain delimited by a Jordan curve. We use for this purpose a tool from complex analysis, the Faber polynomials. The second part is dedicated to the coboundary equation and the existence of solutions of this equation depending on the operator, this problem is dealt with an ergodic point of view.
|
5 |
Solution de C. Hyltén-Cavallius pour un problème de P. Turán concernant des polynômesTinawi, Félix January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
6 |
Solution de C. Hyltén-Cavallius pour un problème de P. Turán concernant des polynômesTinawi, Félix January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
7 |
Algorithmes de Factorisation de Polynomes et de Décomposition de CourbesBertone, Cristina 26 March 2010 (has links) (PDF)
Les courbes algébriques affines sont un outil qui est appliqué dans plusieurs domains, par example le CAGD. Elles sont définies par des polynômes, mais souvent elles ont plusieurs composantes irréductibles distinctes. Dans cette thèse on développe des algorithmes efficaces pour la décomposition d'une courbe definie par des polynômes rationelles. Dans la première partie on présente un algorithme de factorisation absolue pour polynômes en deux variables (problème equivalent à la décomposition de courbes dans le plan). On part de l'algorithme existant TKTD et on améliore la définition de l'extension de corps nécessaire à la factorisation, utilisant des techniques modulaires et l'algorithme LLL pour identifier un nombre algébrique de son approximation p-adique. Dans la deuxième partie on passe au problème de décomposer une courbe dans l'espace tridimensionel: l'équivalent de la factorisation pour le cas du plan est la décomposition primaire d'un idéal pour le cas des 3 dimensions. D'abord on montre des bornes sur les degrées des surfaces qui séparent les différentes composantes, utilisant des résultats classiques de géometrie algébrique, comme le "Lifting problem" ou la regularité de Castelnuovo-Mumford. Après, on considère un algorithme de décomposition classique, mais pas efficace du point de vue computationel, auquel on applique les techniques modulaires. On obtient un algorithme modulaire qui donne la fonction d'Hilbert des composantes réduites de la courbe. Les deux algorithmes principales ont été testés sur plusieurs examples et comparés avec le temps d'exécution d'autres logiciels.
|
8 |
Ensemble de bifurcation des polynômes mixtes et polyèdres de Newton / Bifurcation values of mixed polynomials and Newton polyhedraChen, Ying 28 September 2012 (has links)
L'étude de la fibration de Milnor prend une place très importante dans la Théorie des Singularités. Pour les polynômes holomorphes, on avait déjà beaucoup de résultats montrés par plusieurs spécialistes. Cependant la fibration de Milnor n'existe pas en général pour une application polynomiale. Dans cette thèse on s'intéresse aux propriétés des polynômes mixtes introduits par Oka, qui sont des polynômes C^n → C de variables complexes et leurs conjugées. En utilisant une condition de régularité à l'infini, on montre un théorème de fibration globale qui implique que l'ensemble de bifurcation pour un polynôme mixte est inclus dans un ensemble semi-algébrique fermé de dimension réelle inférieure ou égale à un. En particulier, on définit le polyèdre de Newton à l'infini pour un polynôme mixte et on étudie deux conditions de non-dégénéréscence à l'infini par rapport à ce polyèdre. Il s'avère que les deux conditions de "non-dégénéré" sont semi-algébriques ouvertes, et que la condition de "fortement non-dégénéré" n'est pas dense, donc non-connexe. Avec notre construction on généralise un théorème de Néméthi et Zaharia qui donne une approximation de l'ensemble de bifurcation pour un polynôme mixte non-dégénéré. On prouve la stabilité de la monodromie pour une famille de polynômes mixtes fortement non-dégénérés en supposant l'invariance des polyèdres de Newton. On établit aussi l'analogue à l'infini du théorème local d'Oka sur l'existence de la fibration de Milnor. Ceci étend considérablement des résultats dans le cas holomorphe.Enfin, on introduit une nouvelle définition de "non-dégénéré" pour des applications polynomiales mixtes et on trouve une extension du théorème de Bivia-Ausina en rapport avec la conjecture Jacobienne. / The study of the Milnor fibration plays an important role in Singularity Theory. In the holomorphic case there are plenty of results proved by many specialists. However, the Milnor fibration does not always exist for a polynomial application. In this thesis, we focus on the properties of mixed polynomials introduced by Oka which are in fact polynomials C^n → C of complex variables and their conjugates. By using a regularity condition at infinity, we prove a global fibration theorem which implies that the bifurcation set for a mixed polynomial is included in a semi-algebraic closed set of real dimension strictly less than two. In particular, we define the Newton polyhedron at infinity for a mixed polynomial and study two types of non-degenerate conditions at infinity with respect to this polyhedron. It turns out that these two non-degenerate conditions are semi-algebraic and open, and that the "strongly non-degenerat"e condition is neither dense nor connected. By our construction, we generalise the Néméthi and Zaharia's theorem which gives an approximation of the bifurcation set for a non- degenerate mixed polynomial. In addition, we show the stability of the monodromy in a family of strongly non-degenerate mixed polynomials supposing that their Newton polyhedron at infinity is constant. We also set up a global analogue at infinity of Oka's theorem on the existence of Milnor fibration which extends some results in the holomorphic case. In the end, we introduce a new definition of non-degenerate condition for mixed polynomial applications and find an extension of Bivia-Ausina's theorem which relates to the Jacobian conjecture.
|
9 |
Polynômes orthogonaux avec argument matriciel et les semigroupes associésBalderrama, Cristina 03 July 2009 (has links) (PDF)
Dans ce travail, nous construisons et étudions des familles de polynômes orthogonaux généralisés définis dans l'espace des matrices hermitiennes qui sont associées à une famille de polynômes orthogonaux sur R. Nous considérons plusieurs normalisations pour ces polynômes, et obtenons des formules classiques à partir des formules correspondantes pour des polynômes définis sur R. Nous construisons également des semi-groupes d'opérateurs associés aux polynômes orthogonaux généralisés, et donnons l'expression du générateur infinitésimal de ce semi-groupe ; nous prouvons que ce semi-groupe est markovien dans les cas classiques. En ce qui concerne les expansions d-dimensionnelles de Jacobi nous étudions les notions d'intégrale fractionnelle (potentiel de Riesz), de potentiel de Bessel et de dérivées fractionnelles. Nous donnons une nouvelle décomposition de l'espace L2 associé à la mesure de Jacobi d-dimensionnelle, et obtenons un analogue du théorème du multiplicateur de Meyer dans ce cadre. Nous étudions aussi les espaces de Jacobi-Sobolev.
|
10 |
Sur le calcul du groupe de Galois de polynômes de degrés >= 5Bureau, Nicolas 19 April 2018 (has links)
Déterminer le groupe de Galois d’un polynôme rationnel ou encore d’une extension de corps n’est pas, en général, un travail de tout repos s’il est effectué manuellement. La difficulté de ce problème nous amène donc à vouloir automatiser le processus à l’aide d’algorithmes qui prennent le polynôme en entrée et ressortent son groupe de Galois en un temps raisonnable. Le présent mémoire a pour but de mettre la lumière sur deux algorithmes connus tout en présentant les résultats nécessaires pour les comprendre et les reproduire. Le tout est ensemencé d’exemples pour aider à comprendre certaines notions utilisées. Dans un niveau d’ordre un peu différent, nous analysons une particularité du deuxième algorithme, c’est-à-dire la provenance des polynômes à plusieurs variables utilisés lors de la construction de la résolvante du polynôme dont nous voulons trouver le groupe de Galois.
|
Page generated in 0.0439 seconds