Return to search

Evaluation of Position Sensing Techniques for an Unmanned Aerial Vehicle / Utvärdering av positionsbestämningstekniker för en obemannad flygande farkost (UAV)

<p>The use of Unmanned Aerial Vehicles (UAVs) has rapidly increased over the last years. This has been possible mainly due to the increased computing power of microcontrollers and computers. An UAV can be used in both civilian and military areas, for example surveillance and intelligence. The UAV concerned in this master's thesis is a prototype and is currently being developed at DST Control AB in Linköping.</p><p>With the use of UAVs, the need for a positioning and navigation system arises. Inertial sensors can often give a good position estimation, however, they need continuous calibration due to error build-up and drift in gyros. An external reference is needed to correct for this drift and other errors. The positioning system investigated in this master's thesis is supposed to work in an area defined by an inverted cone with the height of 25m and a diameter of 10m.</p><p>A comparison of different techniques suitable for position sensing has been performed. These techniques include the following: a radio method based on the Instrument Landing System (ILS), an optical method using a Position Sensing Detector (PSD), an optical method using the Indoor GPS system, a distance measurement method with ultrasound and also a discussion of the Global Positioning System (GPS).</p><p>An evaluation system has been built using the PSD sensor and tests have been performed to evaluate its possibilities for positioning. Accuracy in the order of a few millimetres has been achieved in position estimation with the evaluation system.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-6298
Date January 2006
CreatorsAlkeryd, Martin
PublisherLinköping University, Department of Electrical Engineering, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0032 seconds