As the most common motor neuron disease, Amyotrophic lateral sclerosis (ALS) affects around 4 in every 100,000 people worldwide with reports of increasing prevalence over the years. Characterized by progressive degeneration of motor neurons, ALS patients suffer impairments of movement and typically die from respiratory failure 2-5 years after diagnosis. Curiously, ALS exists on a disease continuum with Frontotemporal Dementia (FTD) where 30-50% of patients will be diagnosed with both diseases. In FTD, degeneration of cortical neurons results in diverse behavioural changes including deficits in executive and social skills as well as language and memory. A central connection between ALS and FTD is TDP-43 (encoded by TARDBP), an essential DNA/RNA binding protein known to serve critical functions in numerous cellular processes. Despite mutations in TARDBP constituting a small percentage of familial cases, TDP 43 nuclear-to-cytoplasmic mislocalization is a pathological hallmark of most ALS-FTD cases. Therefore, therapeutic targets to rectify pathology and disease may be uncovered by identifying factors that regulate TDP-43. While it is currently established TDP-43 is ubiquitinated and phosphorylated in diseased states, our lab recently found TDP-43 is SUMOylated in response to stress. Of note, perturbations in the stress response are becoming increasingly implicated in neurodegenerations. Furthermore, TDP-43 plays critical roles in the stress response which become perturbed in ALS/FTD. We developed a TDP-43 "SUMO dead" mouse allele to gain an understanding of how disrupting this may contribute to the pathogenesis of ALS-FTD. Longitudinal characterization of the model explored behavioural and histological in vivo consequences following loss of TDP-43 SUMOylation. However, the phenotypes observed in the mutant mice were less robust in comparison to established ALS/FTD mouse models. Mutant mice did not have consistent differences in tests for similar outcomes, trials of the same test, or across age. Female mutant mice presented with early hyperactivity and disinhibition along with altered social grooming behaviour. At later age, these female mice developed impairments in spatial working memory. Male mice developed apathetic behaviour and motor deficits at the middle age timepoint. Histologically, various forms of pathological TDP-43 were observed in the absence of neurodegeneration. These data reveal that TDP-43 SUMOylation may play an important role in ALS/FTD pathogenesis.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45971 |
Date | 20 February 2024 |
Creators | Part, Caroline |
Contributors | Rousseaux, Maxime W. C. |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0022 seconds