Return to search

Leveraging self-supervision for visual embodied navigation with neuralized potential fields

Une tâche fondamentale en robotique consiste à naviguer entre deux endroits. En particulier, la navigation dans le monde réel nécessite une planification à long terme à l'aide d'images RVB (RGB) en haute dimension, ce qui constitue un défi considérable pour les approches d'apprentissage de bout-en-bout. Les méthodes semi-paramétriques actuelles parviennent plutôt à atteindre des objectifs éloignés en combinant des modèles paramétriques avec une mémoire topologique de l'environnement, souvent représentée sous forme d'un graphe ayant pour nœuds des images précédemment vues. Cependant, l'utilisation de ces graphes implique généralement l'ajustement d'heuristiques d'élagage afin d'éviter les arêtes superflues, limiter la mémoire requise et permettre des recherches raisonnablement rapides dans le graphe.

Dans cet ouvrage, nous montrons comment les approches de bout-en-bout basées sur l'apprentissage auto-supervisé peuvent exceller dans des tâches de navigation à long terme. Nous présentons initialement Duckie-Former (DF), une approche de bout-en-bout pour la navigation visuelle dans des environnements routiers. En utilisant un Vision Transformer (ViT) pré-entraîné avec une méthode auto-supervisée, nous nous inspirons des champs de potentiels afin de dériver une stratégie de navigation utilisant en entrée un masque de segmentation d'image de faible résolution. DF est évalué dans des tâches de navigation de suivi de voie et d'évitement d'obstacles. Nous présentons ensuite notre deuxième approche intitulée One-4-All (O4A). O4A utilise l'apprentissage auto-supervisé et l'apprentissage de variétés afin de créer un pipeline de navigation de bout-en-bout sans graphe permettant de spécifier l'objectif à l'aide d'une image. La navigation est réalisée en minimisant de manière vorace une fonction de potentiel définie de manière continue dans l'espace latent O4A.

Les deux systèmes sont entraînés sans interagir avec le simulateur ou le robot sur des séquences d'exploration de données RVB et de contrôles non experts. Ils ne nécessitent aucune mesure de profondeur ou de pose. L'évaluation est effectuée dans des environnements simulés et réels en utilisant un robot à entraînement différentiel. / A fundamental task in robotics is to navigate between two locations. Particularly, real-world navigation can require long-horizon planning using high-dimensional RGB images, which poses a substantial challenge for end-to-end learning-based approaches. Current semi-parametric methods instead achieve long-horizon navigation by combining learned modules with a topological memory of the environment, often represented as a graph over previously collected images. However, using these graphs in practice typically involves tuning various pruning heuristics to prevent spurious edges, limit runtime memory usage, and allow reasonably fast graph queries.

In this work, we show how end-to-end approaches trained through Self-Supervised Learning (SSL) can excel in long-horizon navigation tasks. We initially present Duckie-Former (DF), an end-to-end approach for visual servoing in road-like environments. Using a Vision Transformer (ViT) pretrained with a self-supervised method, we derive a potential-fields-like navigation strategy based on a coarse image segmentation model. DF is assessed in the navigation tasks of lane-following and obstacle avoidance. Subsequently, we introduce our second approach called One-4-All (O4A). O4A leverages SSL and manifold learning to create a graph-free, end-to-end navigation pipeline whose goal is specified as an image. Navigation is achieved by greedily minimizing a potential function defined continuously over the O4A latent space. O4A is evaluated in complex indoor environments.

Both systems are trained offline on non-expert exploration sequences of RGB data and controls, and do not require any depth or pose measurements. Assessment is performed in simulated and real-world environments using a differential-drive robot.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32002
Date05 1900
CreatorsSaavedra Ruiz, Miguel Angel
ContributorsPaull, Liam
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0026 seconds