Return to search

Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases

En la presente tesis doctoral se han desarrollado dispositivos electroquímicos de estado sólido para la detección selectiva de hidrocarburos en los gases de escape de coches. Diversos materiales fueron empleados para ello. También se llevó a cabo la activación catalítica del electrodo de trabajo para mejorar la reacción electroquímica del analito objetivo.

El etileno fue seleccionado como el analito objetivo para cuantificar la cantidad total de hidrocarburos ya que es uno de los hidrocarburos más abundantes en un gas de escape. Pero el dispositivo no solo debe proporcionar una respuesta selectiva al etileno, sino que también debe tener una baja sensibilidad cruzada a otros compuestos también abundantes en un gas de escape como monóxido de carbono, agua, dióxido de nitrógeno, etc. El dispositivo consiste en un sensor potenciométrico de estado sólido en el que óxido de zirconio estabilizado con 8% de óxido de itrio (8YSZ) es empleado como electrolito. Dos electrodos son impresos en la superficie de cada cara.

Primero, diversos óxidos fueron empleados como electrodo de trabajo utilizando a su vez platino como electrodo de referencia a 550ºC. Muchos de los materiales fueron descartados por su falta de selectividad al etileno, su alta sensibilidad cruzada al monóxido de carbono o por su respuesta no estable. Finalmente, Fe0.7Cr1.3O3 mezclado con 8YSZ fue seleccionado como el material más prometedor dada su buena selectividad al etileno con baja sensibilidad cruzada al monóxido de carbono. Esta configuración fue expuesta a agua como a fenantreno y metilnaftaleno. Esto produjo un aumento de la sensibilidad cruzada del dispositivo al monóxido de carbono, motivo por el que el sensor no sea adecuado para los objetivos de esta tesis. La estrategia adoptada consistió en actuar sobre el electrodo de referencia. El Platino, empleado habitualmente en la bibliografía como electrodo de referencia, fue cambiado por un conductor mixto iónico-electrónico activo al oxigeno: La0.8Sr0.2MnO3 mezclado con 8YSZ (LSM/8YSZ). Desgraciadamente, esto provocó un aumento de la sensibilidad cruzada al monóxido de carbono.

Diversas nanopartículas fueron añadidas en el electrodo de trabajo para mejorar la actividad catalítica y aumentar la reacción electroquímica al etileno. Níquel, titanio y aluminio (especialmente la combinación de los dos últimos con níquel) dieron la mejor respuesta: el sensor era selectivo al etileno con baja sensibilidad cruzada al monóxido de carbono, agua y fenantreno.

El efecto del espesor del electrolito en la respuesta del sensor también fue evaluado en un rango de 0.1 a 1.2 mm. Aunque no había una gran diferencia en la respuesta, la sensibilidad cruzada al monóxido de carbono era menor en el caso del dispositivo más fino. Otras alternativas al 8YSZ como electrolito también fueron evaluadas para trabajar a menores temperaturas (400 a 550ºC): oxido de cerio dopado con gadolinio (CGO) y óxido de zirconio estabilizado con un 10% de óxido de escandio (ScSZ). El dispositivo basado en ScSZ mostró un buen comportamiento a etileno a bajas temperaturas y en condiciones secas pero la adición de agua provocaba un aumento de la sensibilidad cruzada al monóxido de carbono. Una vez infiltrado el electrodo de trabajo con níquel, ambos dispositivos mostraron un buen comportamiento a bajas temperaturas en condiciones secas para concentraciones de etileno inferiores a 100 ppm, aunque la mejor respuesta fue obtenida a 550ºC. Ambos dispositivos mostraron una respuesta selectiva al etileno con baja sensibilidad cruzada al monóxido de carbono, agua y fenantreno.

Se estudió también el efecto de mezclar el electrodo de trabajo con un conductor iónico (8YSZ). Se mezcló La0.87Sr0.13CrO3 (LSC) con 8YSZ sin observarse un cambio en la respuesta comparado con el electrodo solo. Además la mejor configuración Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (infiltrado con níquel) fue expuesto a dioxide de nitr / The present thesis is focused on the development of solid-state electrochemical devices for the selective detection of hydrocarbons in car exhaust gases. For this purpose, several materials were tested as electrodes and electrolytes. Catalytic activation of the working electrode has also been taken into account to boost the electrochemical reaction of the target analyte.

Ethylene is one of the most abundant hydrocarbons in an exhaust gas and was selected as the target analyte to quantify the total amount of hydrocarbons. Not only the device has to be selective to ethylene but it must also have a low cross-sensitivity toward other pollutants abundant in an exhaust gas such as carbon monoxide, water, other hydrocarbons, nitrogen dioxide, etc. Thus, a solid-state potentiometric sensor was selected based on 8% Ytria-stabilized Zirconia (8YSZ) as electrolyte. Two electrodes were screen-printed on top of each face.

First, several metal oxides were tested as working electrode with platinum (Pt) as reference electrode at 550ºC. Most of the materials were discarded because of their lack of selectivity to ethylene, high cross-sensitivity toward carbon monoxide or problems regarding stability. Fe0.7Cr1.3O3 mixed with 8YSZ was finally selected as the most promising material because of its selective response to ethylene with relatively low cross-sensitivity toward carbon monoxide.

This sensor configuration was then exposed to water and phenanthrene and methylnaphthalene. This led to an increase of the cross-sensitivity of the device toward carbon monoxide making the device not suitable for the purposes of the present thesis. The approach to improve the sensor performance was to modify the reference electrode. Platinum, usually employed in literature as reference electrode, was exchanged for a mixed ionic-electronic conductor active to oxygen: La0.8Sr0.2MnO3 mixed with 8YSZ (LSM/8YSZ). Unfortunately, this increases the device activity toward carbon monoxide increasing its cross-sensitivity.

Several nanoparticles were added onto the working electrode to improve the catalytic activity and boost the electrochemical reaction of ethylene. Nickel, titanium and aluminum (the last two elements combined with nickel) provided the best performance: selectivity to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene.

The effect of the electrolyte thickness was also checked in the range from 0.1 to 1.2 mm. Although there was not a huge difference between them, the cross-sensitivity toward carbon monoxide was slightly lower for the thinnest sensor. Other alternatives to 8YSZ electrolyte were tested at lower working temperatures (400 to 550ºC) with the same electrodes materials: gadolinium-doped cerium oxide (CGO) and 10% scandia-stabilized Zirconia (ScSZ). ScsZ-based device showed a good performance in dry conditions but the addition of water decreased its suitability. Once improved the catalytic activity of the working electrode, both devices showed a good performance at lower temperature in dry conditions for ethylene concentration above 100 ppm but the best response was achieved at 550ºC. Both devices were selective to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene.

The effect of mixing the working electrode with an ionic conductor (8YSZ) was also tested by mixing La0.87Sr0.13CrO3 (LSC) with 8YSZ and no change in response was observed when compared to the bare electrode. Finally, the best sensor configuration Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (after infiltration with nickel) was exposed to nitrogen dioxide to check the cross-sensitivity. The response was still selective to ethylene even with the addition of nitrogen dioxide plus water. / En la present tesi doctoral s'han desenvolupat dispositius electroquímics d'estat sòlid per a la detecció selectiva d' hidrocarburs als gasos d'escapament dels automòbils. Diversos materials van ser empleats per a tal fi. També es va dur a terme l'activació catalítica de l'elèctrode de treball per a millorar la reacció electroquímica al anàlit objectiu.

L' etilè va ser seleccionat com anàlit objectiu per a quantificar la quantitat total d' hidrocarburs, ja que és un dels hidrocarburs més abundants en un gas d'escapament. Però el dispositiu no ha de ser tan sols selectiu a l'etilè, sinó que també deu proporcionar una baixa sensibilitat creuada a altres elements força abundants en un gas d'escapament com són el monòxid de carboni, l'aigua, el diòxid de nitrogen, etc. Així, el dispositiu consisteix en un sensor potenciomètric d'estat sòlid en el que l'òxid de zirconi estabilitzat amb un 8% d'òxid d'itri (8YSZ) és empleat como a electròlit. Els elèctrodes van impresos a cadascuna de les superfícies del dispositiu.

Primer, diversos òxids es van emprar com a elèctrode de treball fent servir platí com elèctrode de referència a 550ºC. Molts dels materials van ser descartats per motiu de la seva manca de selectivitat al etilè, la seva alta sensibilitat creuada al monòxid de carboni o perquè la resposta no era estable. Finalment, el Fe0.7Cr1.3O3 mesclat amb 8YSZ va ser seleccionat com el material més prometedor atès a la selectivitat a l'etilè i la baixa sensibilitat creuada al monòxid de carboni. Aquesta configuració és doncs exposada tant a l'aigua com al fenantrè i al metilnaftalè. Això va produir un increment de la sensibilitat creuada al monòxid de carboni, fent que el dispositiu no resulti idoni per als objectius de la present tesi. Es va adoptar com a estratègia modificar l'elèctrode de referència. Platí, empleat sovintment com a elèctrode de referència a la bibliografia, va ser canviat per un conductor mixt iònic-electrònic actiu a l'oxigen: La0.8Sr0.2MnO3 mesclat amb 8YSZ (LSM/8YSZ). Malauradament, això va provocar l'augment de la sensibilitat creuada al monòxid de carboni.
Diverses nanopartícules van ser afegides al elèctrode de treball per tal de millorar la seva activitat catalítica i així augmentar la reacció electroquímica de l'etilè. Níquel, titani i alumini (especialment la combinació dels dos darrers amb níquel) van donar la millor resposta: el sensor era selectiu a l¿etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i al fenantrè.

L'efecte del espessor del electròlit a la resposta del sensor també va ser avaluada en un rang de 0.1 a 1.2 mm. Malgrat que no hi ha una gran diferència en la resposta, la sensibilitat creuada al monòxid de carboni és menor en el cas del dispositiu més prim. Altres alternatives al 8YSZ com a electròlit van ser també avaluades per tal de treballar a temperatures menors (400 a 550ºC): òxid de ceri dopat amb gadolini (CGO) i òxid de zirconi estabilitzat amb un 10% d'òxid d'escandi (ScSZ).
El dispositiu basat en ScSZ va mostrar un bon comportament a l'etilè a baixes temperatures en condiciones seques, però la adició d'aigua provocava un augment de la sensibilitat creuada al monòxid de carboni. Una vegada que l'elèctrode de treball es infiltrat amb níquel, ambdós dispositius mostraren un bon comportament a baixes temperatures en condicions seques per a concentracions d'etilè menors de 100 ppm, encara que la millor resposta fou obtinguda a 550ºC. La resposta era selectiva a l'etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i el fenantrè.

Es va comprovar també l'efecte de mesclar l'elèctrode de treball amb un conductor iònic (8YSZ). Es va mesclar La0.87Sr0.13CrO3 (LSC) amb 8YSZ sense observa cap canví en la resposta comparada amb l'electrode sense 8YSZ. la millor configuració Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (infiltrado con níquel) fou exposada / Toldra Reig, F. (2018). Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110968

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/110968
Date22 October 2018
CreatorsToldra Reig, Fidel
ContributorsSerra Alfaro, José Manuel, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds